
Vol.:(0123456789)

SN Computer Science (2023) 4:157
https://doi.org/10.1007/s42979-022-01551-w

SN Computer Science

ORIGINAL RESEARCH

Coordinating Multi‑party Vehicle Routing with Location Congestion
via Iterative Best Response

Waldy Joe1 · Hoong Chuin Lau1 

Received: 1 February 2022 / Accepted: 9 December 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
This work is motivated by a real-world problem of coordinating B2B pickup-delivery operations to shopping malls involving
multiple non-collaborative logistics service providers (LSPs) in a congested city where space is scarce. This problem can
be categorized as a vehicle routing problem with pickup and delivery, time windows and location congestion with multiple
LSPs (or ML-VRPLC in short), and we propose a scalable, decentralized, coordinated planning approach via iterative best
response. We formulate the problem as a strategic game where each LSP is a self-interested agent but is willing to participate
in a coordinated planning as long as there are sufficient incentives. Through an iterative best response procedure, agents
adjust their schedules until no further improvement can be obtained to the resulting joint schedule. We seek to find the best
joint schedule which maximizes the minimum gain achieved by any one LSP, as LSPs are interested in how much benefit
they can gain rather than achieving a system optimality. We compare our approach to a centralized planning approach and
our experiment results show that our approach is more scalable and is able to achieve on average 10% more gain within an
operationally realistic time limit.

Keywords  Vehicle routing problem · Multi-agent systems · Best response planning

Introduction

Business-to-business (B2B) pickup-delivery operations to
and from commercial or retail locations involving multiple
parties, commonly referred to as logistics service provid-
ers (LSPs), more often than not cannot be done in silos.
Resource constraints at these locations such as limited
parking bays can cause congestion if each LSP adopts an
uncoordinated, selfish planning. Thus, some form of coor-
dination is needed to deconflict the schedules of these LSPs
to minimize congestion thereby maximizing logistics effi-
ciency. This research is motivated by a real-world problem

of improving logistics efficiency in shopping malls involv-
ing multiple independent LSPs making B2B pickups and
deliveries to these locations in small, congested cities where
space is scarce.

Collaborative planning for vehicle routing is an active
area of research and had been shown to improve efficiency,
service level and sustainability [1]. However, collaborative
planning assumes that various LSPs are willing to collabo-
rate with each other by forming coalitions, exchanging of
information and/or sharing of resources to achieve a com-
mon objective. This is different from our problem setting
where LSPs are independent entities who can only make
decision locally in response to other LSPs’ decisions and
they do not interact directly with each other to collaborate
or make joint decision.

Ideally if we have one single agent who can control
the routes and schedules of multiple LSPs with complete
information and collaboration amongst the LSPs, we may
achieve some form of system optimality. However, an
unintended outcome is that some LSPs may suffer more
loss than if they adopt their own planning independently.
Moreover, such centralized approach is not scalable and

This article is part of the topical collection “Advances in Multi-
Agent Systems Research: EUMAS 2021 Extended Selected Papers”
guest edited by Davide Grossi, Ariel Rosenfeld and Nimrod Talmon.

 *	 Hoong Chuin Lau
	 hclau@smu.edu.sg

	 Waldy Joe
	 waldy.joe.2018@phdcs.smu.edu.sg

1	 School of Computing and Information Systems,
Singapore Management University, 80 Stamford Road,
Singapore 178902, Singapore

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01551-w&domain=pdf
http://orcid.org/0000-0002-5326-411X

	 SN Computer Science (2023) 4:157 157   Page 2 of 16

SN Computer Science

not meaningful in solving real-world problems, since LSPs
may not always be willing to collaborate with one another.

To address the above concern, this paper proposes a
scalable, decentralized, coordinated planning approach via
iterative best response. The underlying problem can be
seen as a vehicle routing problem with pickup and deliv-
ery, time windows and location congestion with multiple
LSPs (or ML-VRPLC in short) (see Fig. 1a and b).

More precisely, we formulate the problem as a strategic
game where each LSP is a self-interested agent willing to
participate in a coordinated planning (without collaborat-
ing directly with other LSPs) as long as there are sufficient
incentives. [2] coined the term “loosely-coupled” agent
to describe an agent which exhibits such characteristics.
Through an iterative best response procedure, multiple
agents adjust their schedules until no further improve-
ment can be obtained to the resulting joint schedule. We
seek to find the best joint schedule which maximizes the
minimum gain achieved by any one LSP, since LSPs are
more interested in how much benefit they can gain rather
than achieving a system optimality. To realize such gains,
we propose to use maximum cost deviation from an ideal
solution (a solution that assumes no other LSPs exist to
compete for the limited resources) as the performance
measure. It is clear that the minimum gain is equivalent to
the cost deviation of the worst performing LSP from this
ideal solution.

This paper makes the following contributions:

1.	 We define a new variant of VRP, ML-VRPLC and for-
mulate the problem as an n-player strategic game.

2.	 We propose a scalable, decentralized, coordinated plan-
ning approach based on iterative best response consist-
ing of a metaheuristic as route optimizer with a sched-
uler based on constraint programming (CP) model to
solve a large-scale ML-VRPLC.

3.	 We show experimentally that our approach outperforms
a centralized approach in solving large-scale problem

within an operationally realistic time limit of 1 hour
while still providing enough incentives for LSPs to par-
ticipate in a coordinated planning.

This paper is an extended version of a conference paper of
the same title [3]. Besides improving the writeup, we pro-
vide extensive details on our proposed routing and sched-
uling heuristic for the best response computation step, as
well as an example to illustrate our proposed approach. We
also conduct a comprehensive set of experiments to further
evaluate the robustness of our approach by varying the value
of a certain key input parameter, testing on different problem
sizes and incorporating plan deviations by some of the LSPs.

Related Works

VRP with Location Congestion

VRPLC is essentially a variant of a classical VRP with
pickup and delivery, and time windows (VRPPDTW) but
with cumulative resource constraint at each location [4].
Resources can be in the form of parking bays, cargo storage
spaces or special equipment such as forklifts. In VRPLC,
there are temporal dependencies between routes and sched-
ules that do not exist in classical VRPs. In classical VRPs,
arrival times of vehicles are merely used to ensure time win-
dow feasibility. In VRPLC, changes to the time schedule of
one route may affect the time schedule of another routes in
the form of wait time or time window violation. Many exist-
ing approaches to VRP do not take into consideration this
relationship between routes and schedules.

Lam and Van Hentenryck [4] proposed a branch-and-
price-and-check (BPC) approach to solve a single-LSP
VRPLC. It is inspired by a branch-and-cut-and-price
method for VRPPDTW [5] and combines it with a con-
straint programming subproblem to check the VRPPDTW
solutions against the resource constraints. However, BPC

Fig. 1   Problem illustrations for
single-LSP VRP with location
congestion (VRPLC) and the
multi-LSP version of the prob-
lem (ML-VRPLC)

SN Computer Science (2023) 4:157 	 Page 3 of 16  157

SN Computer Science

approach can only find feasible solutions for instances up
to 150 pickup-delivery requests and proves optimality for
up to 80 requests given a time limit of 2 h. Therefore, this
approach is not scalable when applied directly to solve
ML-VPRLC, since pickup-delivery requests are usually in
the order of hundreds per LSP and for our problem setting,
a solution is expected within an hour due to operational
requirement.

Song et al. [6] studied a similar problem involving
docking congestion at shopping malls under travel time
and service time uncertainty. They modeled that problem
as a two-stage stochastic mixed integer program, devel-
oped an adaptive large neighborhood search algorithm that
approximates the second stage recourse function using
various sample sizes.

A direct application of the above works to ML-VRPLC
assumes a fully centralized, collaborative planning
approach which we discussed earlier that may not be prac-
tical nor meaningful under a multiple LSP context.

ML‑VRPLC

ML-VRPLC can be considered as a problem belonging to
an intersection between two main, well-studied research
areas namely multi-party VRP and multi-agent planning
(MAP). Existing approaches to Multi-Party VRP and
MAP can broadly be categorized based on the degrees of
collaboration and cooperation respectively. Based on our
understanding of our problem setting, approaches to ML-
VRPLC should fall within Quadrant 3 (see Fig. 2) where
the agents are non-collaborative but are still willing to
cooperate to a certain degree. As ML-VRPLC is a new
variant of VRP, there is no prior work done on this prob-
lem. Nevertheless, in the following subsections, we discuss
existing works that are relevant to solving ML-VRPLC.

ML‑VRPLC as a Multi‑Party VRP

To solve VRPs involving multiple parties similar to ML-
VRPLC, many existing works in the literature focus on
collaborative planning approaches. Gansterer and Hartl [1]
coined the term collaborative vehicle routing and it is a big
area of research on its own. Collaborative vehicle routing
can be classified into centralized and decentralized collab-
orative planning. The extent of collaboration ranges from
forming of alliances or coalitions (for e.g. [7, 8]) to sharing
of resources such as sharing of vehicles or exchanging of
requests through auction (for e.g. [9, 10]). We have estab-
lished earlier that existing works in this area are not directly
applicable to our problem due to the non-collaborative
nature of the LSPs.

ML‑VRPLC as an MAP Problem

MAP is simply planning in an environment where there
exist multiple agents with concurrent actions. Approaches
to MAP can be further categorized into cooperative and non-
cooperative domains although most MAP problems lie in
between these two domains.

Cooperative Domain

Cooperative MAP involves agents that are not self-interested
and are working together to form a joint plan for a common
goal [11]. [2] introduced MA-STRIPS, a multi-agent plan-
ning model on which many cooperative MAP solvers are
based on. [12] proposed a two-step approach consisting of
centralized planner to produce local plan for each agent fol-
lowed by solving a distributed constraint satisfaction prob-
lem to obtain a global plan. [13] introduced the concept of
planning games and proposed two models namely coalition-
planning games and auction-planning games. Those two
models assume agents collaborate with each other through
forming of coalitions or through an auction mechanism;
similar to the approaches within the collaborative vehicle
routing domain. In general, the approaches in this domain
essentially assume cooperative agents working together to
achieve a common goal.

Non‑Cooperative Domain

Planning in the context of multiple self-interested agents
where agents do not fully cooperate or collaborate falls into
the domain of non-cooperative game theory. MAP problem
can be formulated as strategic game where agents interact
with one another to increase their individual payoffs.

Lambert et al. [14] proposed a sampled fictitious play
algorithm as an optimization heuristic to solve large-scale
optimization problems. Optimization problem can be

Fig. 2   ML-VRPLC as a multi-party VRP and multi-agent planning
problem

	 SN Computer Science (2023) 4:157 157   Page 4 of 16

SN Computer Science

formulated as a n-player game where every pure-strategy
equilibrium of a game is a local optimum since no player
can change its strategy to improve the objective function.
Fictitious play is an iterative procedure in which at each step,
players compute their best replies based on the assumption
that other players’ actions follow a probability distribution
based on their past decisions [15]. This approach had been
applied to various multi-agent optimization problems where
resources are shared and limited such as dynamic traffic net-
work routing [16], mobile units situation awareness problem
[17], power management in sensor network [18] and multi-
agent orienteering problem [19].

On a separate front, [20] proposed a best-response plan-
ning method to scale up existing multi-agent planning
algorithms. The authors used existing single-agent plan-
ning algorithm to compute best response of each agent to
iteratively improve the initial solution derived from an MAP
algorithm. It is scalable compared to applying the MAP
algorithm directly to an MAP planning problem. However,
the authors evaluated their proposed approach only on stand-
ard benchmark problems such as those found in the Inter-
national Planning Competition (IPC) domains. On the other
hand, [21] applied a similar best-response planning approach
to a real-world power management problem.

ML‑VRPLC as a Non‑Cooperative MAP Problem

Given that the LSPs in ML-VRPLC are considered as
“loosely-coupled” agents, the approach to solve ML-VRPLC
will be somewhere in between cooperative and non-coopera-
tive domains of MAP, although it tends to lean more towards
the non-cooperative domain since LSPs are still largely inde-
pendent and self-interested. Our approach includes certain
elements that are discussed above such as non-cooperative
game theory and best-response planning.

There exist prior works that propose MAP approaches
for problems with multiple self-interested agents similar to
ours. One such work proposes an approach that combines
mechanism design (specifically Vickrey-Clarke-Groves
(VCG) mechanism) and a distributed planning approach
(Multi-Agent A*) [22]. Both this work and ours share some
common features such as an assumption that agents are will-
ing to cooperate as long as there are sufficient incentives for
them to do so and that agents update their plans in a iterative
fashion based on observing the plans of other agents. How-
ever, the main key difference between these two approaches
is that in [22], agents are able to communicate with other
agents directly and each agent keeps track of its individual
list of explored and unexplored states/plans. In contrast, for
our approach, we assume a central agent that coordinates
the message-passing function and keeps track of a central
list of states/plans. This difference implies that the search

process of our approach is more coordinated and structured
while there is no clear structure or order that determines how
often, when and which agents to communicate to in [22].
This difference alone results in both strengths and weak-
nesses for each approach. More coordinated approach can
be more efficient as it avoids exploring the same solutions
multiple times and incurs lower communication cost while,
a more distributed approach is computationally less expen-
sive and does not need to assume the presence of a trusted
central agent. Thus, the suitability and the performance of
these two approaches will be very much dependent on the
specific problem settings and requirements.

Nevertheless, our work differs mainly from other existing
works in that we apply techniques from other research fields
(MAP and game theory) on a new variant of a well-studied
optimization problem (VRP) with a real-world problem
scale.

Problem Description

Multiple LSPs have to fulfill a list of pickup-delivery
requests within a day. They have multiple vehicles which
need to go to the pickup locations to load up the goods and
deliver them to various commercial or retail locations such
as warehouses and shopping malls. The vehicles need to
return to their depot by a certain time and every request has
a time window requirement. A wait time will be incurred if
the vehicle arrives early and time violations if it serves the
request late. In addition, every location has limited park-
ing bays for loading and unloading, and a designated lunch
hour break where no delivery is allowed. As such, further
wait time and time window violations will be incurred if a
vehicle arrives in a location where the parking bays are fully
occupied or arrives during the designated lunch hour.

The objective of each LSP is to plan for a schedule that
minimizes travel time, wait time and time window viola-
tions. Given that parking bays at every location are shared
among the multiple LSPs, some sort of coordination is
needed to deconflict their schedules to minimize congestion.

Model Formulation

ML‑VRPLC as a Strategic Game

We formulate ML-VRPLC as an n-player game ΓML−VRPLC
with LSPs represented as players i ∈ N having a finite set
of strategies Si and sharing the same payoff function i.e.
u1(s) = ⋯ = un(s) = u(s) . s ∈ S1 ×… × Sn is a finite set

SN Computer Science (2023) 4:157 	 Page 5 of 16  157

SN Computer Science

since Si is finite. Table 1 provides the set of notations and
the corresponding descriptions used in the model.

Strategy

In this paper, we will use the terms ’strategy’, ’solution’
and ’schedule’ interchangeably since a strategy of a player
i.e. an LSP is represented in the form of a schedule. A
schedule is a solution of a single-LSP VRPLC which con-
sists of the routes (sequence of locations to visit) of every
vehicle and the corresponding time intervals (start and end
service times) of every requests served by each vehicle. si
is represented as the following tuple:

si = ⟨si.routes, si.timeIntervals⟩

Potential Function

We define a function, P(s) =
∑

i∈N ui(s) i.e. total weighted
sum of travel times, wait times and time violations when
all LSP follow a joint schedule s. In this paper, we define
the payoff function, ui(s) as cost incurred (see Eq. (6) for
the full definition). P(s) is an ordinal potential function
for ΓML-VRPLC since for every i ∈ N and for every s−i ∈ S−i

Proof 
	� ◻

Thus, ΓML-VRPLC is a finite ordinal potential game and
it possesses a pure-strategy equilibrium and has the finite
improvement property (FIP) [23]. Having the FIP means

(1)
ui(si, s−i) − ui(s�

i
, s−i) > 0 iff

P(si, s−i) − P(s�
i
, s−i) > 0 for every si, s

�
i
∈ Si.

P(si, s−i) − P(s�
i
, s−i) > 0

⇒ ui(si, s−i) +
∑

j∈−i

uj(s−i) −
(
ui(s�

i
, s−i) +

∑

j∈−i

uj(s−i)
)
> 0

⇒ ui(si, s−i) − ui(s�
i
, s−i) > 0

that every path generated by a best response procedure
in ΓML-VRPLC converges to an equilibrium. We are able to
show conceptually and empirically that our approach con-
verges into an equilibrium in the later sections.

Equilibrium and Local Optimality

s� = (s�
i
, s�

−i
) is an equilibrium if

An equilibrium of ΓML-VRPLC is a local optimum since no
player can improve its payoff/reduce its cost by changing its
individual schedule. Conversely, every optimal solution, s∗
of ΓML−VRPLC is an equilibrium since ui(s∗) ≤ ui(si, s

∗
−i
) for

all i ∈ N where si ∈ Bi(s
∗
−i
).

Objective Function

The objective of this problem is to minimize the maximum
payoff deviation of any one LSP from an ideal solution.

where sideal is defined as the joint schedule where all other
LSPs do not exist to compete for parking bays. sideal is a
Lower Bound (LB) solution since it is a solution of a relaxed
ΓML-VRPLC . We are essentially trying to search for solutions
where each LSP’s payoff is as close as possible to its cor-
responding LB solution.

We do not def ine the objective function as
mins∈S

∑
i∈N ui(s) because in this game, the players are not

concerned about the system optimality (total payoff of

(2)ui(s�
i
, s�

−i
) ≤ ui(si, s

�
−i
) for all i ∈ N where si ∈ Bi(s

�
−i
).

(3)mins∈Sf (s)

(4)f (s) = maxi∈NDeviationLB(s, i)

(5)DeviationLB(s, i) =
ui(s) − ui(sideal)

ui(sideal)
× 100%

Table 1   Set of notations used in
Γ
ML-VRPLC

Notation Description

N A set of LSPs, N ∈ {1, 2, ..., n}

si A schedule of LSP i, i ∈ N, si ∈ Si

s A joint schedule of all LSP, s = (s1, s2, ..., sn), s ∈ S

s−i A joint schedule of all LSP except LSP i, s−i = (s1, ..., si−1, si+1, ..., sn)

(si, s−i) A joint schedule where LSP i follows a schedule si while the rest fol-
lows a joint schedule, s−i

ui(s) Payoff of LSP i when all LSP follows a joint schedule, s
Bi(s−i) Best response of LSP i when all other LSPs follow a joint schedule, s−i

	 SN Computer Science (2023) 4:157 157   Page 6 of 16

SN Computer Science

all players) but rather on how much benefit it can obtain
by adopting a coordinated planning instead of planning
independently.

Solution Approach

The key idea of our proposed approach is to improve a
chosen joint schedule iteratively by computing the best
responses of each player assuming the rest of the players
adopt the chosen joint schedule until no improvement can be
obtained to the resulting joint schedule or until a given time
limit or maximum number of iterations has been reached.
Our approach is decentralized in nature because each LSP
is an independent agent which can compute its own route
and schedule i.e. a central agent does not dictate how each
player determine its decision.

Given that we have established that our problem is a
potential game and has an FIP, our approach will converge
to an equilibrium which has been shown earlier to be equiv-
alent to a local optimal solution. Therefore, our approach
seeks to explore multiple local optimal solutions until the
terminating conditions are met and returns the best one
found so far.

Iterative Best Response Algorithm

Algorithm 1 describes how the iterative best response algo-
rithm works. At each iteration (lines 3–22), a joint sched-
ule is chosen from a sampling pool of previously obtained
improved joint schedules or from the current best joint
schedule (line 7). We implement an �-greedy sampling
policy to allow for exploration of multiple improvements
paths (see Fig. 3 for an example of an improvement path)
to search for best joint schedule. An improvement step
consisting of n − 1 best response computations is applied
to the chosen joint schedule to obtain new improved joint
schedules (line 10). If no further improvement can be
made to the sampled joint schedule, we proceed to the next
iteration (lines 11–13). We update the current best joint
schedule if any of the new joint schedules has a lower f(s)
value than fmin (lines 15–16). Otherwise, we place the new
improved joint schedules into the sampling pool for further
improvement steps in the subsequent iterations (lines 17,
19). We repeat the process until termination conditions
are met. Finally, we return the current best joint schedule
as the final output.

Fig. 3   One example of an
improvement path assuming
n = 3

SN Computer Science (2023) 4:157 	 Page 7 of 16  157

SN Computer Science

Initial Solution, Lower Bound and Upper Bound Solutions

The initial joint schedule can be initialized to any random, fea-
sible joint schedule. However, in this paper, we use the uncoor-
dinated joint schedule as the initial solution to be improved by
iterative best response algorithm. To compute the initial joint
schedule, sinitial , we first compute the best schedules for each
LSP independently assuming no other LSPs exist to compete
for the limited resources. This is akin to solving a single-LSP
VRPLC for each LSP. The resulting joint schedule is in fact
sideal and is the LB solution to ΓML-VRPLC . Next, a scheduler
consisting of a CP model that incorporates the resource capac-
ity constraint at each location is solved for the combined routes
of sideal . This forms an uncoordinated joint schedule, suncoord
which serves as an Upper Bound (UB) solution to ΓML-VRPLC
as any coordinated planning approaches must result in solu-
tions that are better than an uncoordinated one. We use the LB

and UB solutions in the experiments to evaluate the solution
quality of our proposed approach.

Finite Improvement Paths and Convergence

Each improved joint schedule can be represented as a node in
a directed tree. A series of nodes with parent-child relation-
ship forms an improvement path as shown in Fig. 3 where
P(sk,i) < P(sk−1,i

�

) for all k ≥ 1 and i, i� ∈ N . Every improve-
ment path is finite since S is a finite set. Every finite improve-
ment path will converge to an equilibrium and every terminal
point is a local optimum. However, since the best response is
computed heuristically and there is no way to prove optimality
(as discussed in “Best Response Computation”, computing
best response in our problem setting is equivalent to solv-
ing a mid-sized VRP with complex constraints which can-
not be solved to optimality given the time limit provided), the

	 SN Computer Science (2023) 4:157 157   Page 8 of 16

SN Computer Science

resulting equilibrium is just an approximate. Nevertheless, we
can show empirically in our experiments that our approach
will converge to an approximated equilibrium solution after a
certain number of iterations.

In short, our approach explores multiple improvement paths
to search for a joint schedule that return the best objective
value, f(s) with the lowest total payoff, P(s) as a secondary
objective.

Best Response Computation

At every iteration, best response to a chosen joint schedule,
sk is computed for each LSP (line 10 of Algorithm 1). The
best response computation of single LSP is equivalent to
solving a single-LSP VRPLC where the resource constraint is

determined by the resource utilization of each location by all
other LSPs based on sk

−i
 . Table 2 shows the notations used in

this single-LSP VRPLC model.
We propose a heuristic consisting of Adaptive Large Neigh-

bourhood Search (ALNS) as route optimizer and a scheduler
based on a CP model to solve this single-LSP VRPLC. Heuris-
tic is proposed as it is more scalable for a real-world problem
setting. ALNS is used to search for better routes and the CP
model based on the resulting routes is then solved to produce a
schedule that meets the resource and time-related constraints.
ALNS is chosen because it is probably the most effective
metaheuristic for the VRPPDTW [24] and ALNS is widely
used to solve large-scale problem [25]. Algorithm 2 details
the proposed best response computation consisting of ALNS
and CP model.

ALNS as Route Optimizer

The ALNS algorithm implemented in this paper is adapted
from the vanilla version of ALNS proposed by [26] with
differences in the choices of remove and insert operators and
parameters used. However, the key difference in our ALNS

implementation lies in line 7 of Algorithm 2. To compute the
time intervals and the corresponding payoff of the updated
solution, a CP model is solved. The detailed description of
the CP model can be found in “CP Model as Scheduler”.

As the words adaptive and large in ALNS imply, ALNS
explores large search space for new solutions by adaptively

SN Computer Science (2023) 4:157 	 Page 9 of 16  157

SN Computer Science

choosing remove and insert operators to remove a certain
number of orders from existing solution and reinserting them
back to other positions to form a new solution (lines 4–6).
In our implementation, we use the following remove and
insert operators.

Remove Operators

We define the following 5 remove operators and each opera-
tor will select 10 − 15% of orders uniformly to be removed
from the current solution.

1.	 Random removal: This operator randomly selects orders
from the current solution. Random removal allows
exploration of larger search space even though the prob-
ability of finding a better solution is low.

2.	 Worst removal: This operator selects orders that result
in the maximum increase in payoff/cost if removed from
the current solution.

3.	 Spatio-temporal distance removal: This operator selects
orders which has the highest sum of spatio-temporal dis-
tances with their adjacent orders. This operator tries to
relocate orders that are more likely to incur higher travel
cost and time window violations. The definition of spa-
tio-temporal distance implemented was first introduced
in [27].

4.	 Time-violation removal: This operator selects orders
that result in highest time window violation. Similar to
spatio-temporal distance removal, this operator tries to
relocate orders that are “out of position” with respect to
their time window requirements.

5.	 Shaw removal: This operator was first introduced in [28].
The basic idea of Shaw removal is to select orders that
are similar to each other. The intuition is that remov-
ing and reinserting orders that are similar to each other
is easier and is more likely to create better solution.

Removing and inserting orders that are vastly different
from one another can be challenging and may result in
unsuccessful reinsertions or poor insertion positions.

The above remove operators are selected to provide both
exploitation and exploration in the search process. Rand-
omization in the operator provides the exploration capabil-
ity while removal operators like worst, spatio-temporal and
time-violation are more exploitative in nature as they aim
to improve the solution in a greedy manner. Shaw removal
is essentially the opposite of worst removal and thus having
both operators provides a diversification of search. Shaw
removal select orders that are easier to remove and insert
while worst removal select orders that are relatively harder
to reinsert.

Insert Operators

Prior to any insertion operation, orders are selected for
removal using the selected remove operations as described
in previous section. The selected orders can be removed in
two ways namely remove all or remove one by one. Remove
all indicates that the selected orders for removal are removed
together prior to insertion while remove one by one indi-
cates that order is removed one at the time prior to insertion.
Meanwhile, insertion is done sequentially which means that
for remove all, all orders are removed and reinserted one by
one while for remove one by one, each order is removed and
reinserted one at a time.

These are the six insert operators implemented:

1.	 Remove all with greedy insertion: All orders are removed
prior to any insertion. Greedy insertion heuristics insert
the order that returns the minimum increase in payoff/
cost.

Table 2   Set of notations used in
the single-LSP VRPLC model

Notation Description

V A set of vehicles
R A set of all requests
M A set of all locations
Rv A set of requests served by vehicle v
Om A set of requests at location m ∈ M.
Cm,t Resource capacity at location m at time t
er,v Lower time window of request r served by vehicle v
lr,v Upper time window of request r served by vehicle v
prev(r) Previous request served prior to request r, prev(r), r ∈ Rv.
dx,y Travel time from location of request x to location of request y
timeIntervalr,v Time interval when request r in vehicle v is being served

consisting of start and end time

T0, coolingRate Parameters for acceptance criteria in simulated annealing

	 SN Computer Science (2023) 4:157 157   Page 10 of 16

SN Computer Science

2.	 Remove one by one with greedy insertion: Similar to the
first operator except that orders are removed and inserted
one at a time.

3.	 Remove all with greedy insertion with noise: Similar to
the first operator except that calculation of increase in
payoff/cost includes a noise function.

4.	 Remove one by one with greedy insertion with noise:
Similar to the second operator except that calculation
of increase in payoff/cost includes a noise function.

5.	 Remove all with regret-k insertion: All orders are
removed prior to any insertion. This operator inserts
orders based on their regret values. Regret value is
defined as the difference in the cost of inserting into its
best route and its kth best route.

6.	 Remove one by one with regret-k insertion: Similar to
the fifth operator except that orders are removed and
inserted one at a time.

Similar to the remove operators, the above insert operators
are selected to provide both exploitation and exploration in
the search process. Randomization in the operator via noise
function provides the exploration capability while greedy
insertion is more exploitative in nature. In addition, regret
insertion provides a certain degree of look ahead capability
since greedy insertion is more likely to cause the solution to
be stuck at local optima.

On top of the exploration capability provided by the
remove and insert operators, a similar mechanism used in
Simulated Annealing is applied in choosing poorer solutions
to further enlarge the search space and also to escape local
optima (line 14). For more detailed discussions of ALNS
algorithm such as on the roulette wheel mechanism (line 4)
and the adaptive weight adjustment for the operators (line
17), we refer our readers to [26].

CP Model as Scheduler

The following CP model is solved to obtain the updated time
intervals of the newly-found routes and the corresponding
payoff of the updated schedules at every ALNS iteration in
line 7 of Algorithm 2. The payoff is computed as follow:

where

(6)

u
i(s

i
) = w1 × totalTravelTime(s

i
.routes)

+minimize
∑

v∈V

{
w2 ×

∑

r∈R
v

waitTime
r,v

+w3 ×
∑

r∈R
v

timeViolation
r,v

}

The second term of Eq. (6) is the objective function of the
CP model with {timeIntervalr,v}r∈Rv,v∈V

 as the primary deci-
sion variables of the model. The key constraints of the CP
model are as follow:

Constraint (7) is used to model the resource capac-
ity constraint at each location at a given time t where
start(timeIntervalr,v) ≤ t ≤ end(timeIntervalr,v) and Cm,t is
determined by the resource utilization of all other LSPs
based on sk

−i
 . Constraint (8) ensures that the time intervals

of requests within a route do not overlap. Constraints (9)
and (10) ensure that the start time of a request must at least
be later than the end time of the previous request plus the
corresponding travel time and it should not start before its
lower time window. Other constraints relating to opera-
tional requirements such as no delivery within lunch hours,
operating hours of the locations and vehicles are omitted
to simplify the discussion as it is fairly straightforward to
incorporate these constraints.

Solution Illustration

In this section, we provide a simple illustration on how
our approach works using a simple toy example involving
2 LSPs and here, we assume each location has a capacity
of one. Our approach begins by computing the initial solu-
tion, lower bound and upper bound solutions as explained
in “Initial Solution, Lower Bound and Upper Bound”.
Each LSP plans independently assuming no other LSPs
exist to compete for resource and the resulting joint sched-
ule is as follows s1 = ⟨[A,B, ...], [(5, 7), (9, 11), ...]⟩ and
s2 = ⟨[B,D, ...], [(4, 12), (15, 17), ...]⟩ . This resulting joint
schedule is in fact sideal which is a LB solution. However,

w1,w2,w3 are predetermined set of weights,

waitTime
r,v = min{0, (start(timeInterval

r,v)

− end(timeIntervalprev(r),v) − dprev(r),r)},

timeViolation
r,v = min{0, (end(timeInterval

r,v) − l
r,v)},

s
i
.timeIntervals = {timeInterval

r,v}r∈R
v
,v∈V

(7)
CUMULATIVE({timeIntervalr,v ∶ v ∈ V ,

r ∈ Rv ∩ Om}, 1,Cm,t),∀m ∈ M

(8)noOverlap({timeIntervalr,v ∶ r ∈ Rv}),∀v ∈ V

(9)
start(timeInterval

r,v) ≥ end(timeIntervalprev(r),v)

+ dprev(r),r,∀r ∈ R
v
, v ∈ V

(10)start(timeIntervalr,v) ≥ er,v,∀r ∈ Rv, v ∈ V

SN Computer Science (2023) 4:157 	 Page 11 of 16  157

SN Computer Science

it is observed that LSP 1 will need to wait at Location B
because LSP 2 is still occupying Location B at time inter-
val (9, 11). Thus, through a CP-based scheduler, this ini-
tial joint schedule is revised to a feasible solution such as
s1 = ⟨[A,B, ...], [(5, 7), (13,15), ...]⟩ while s2 remains. Due to
the waiting time incurred in Location B, the cost of this
initial solution is higher. This is a suncoord since there is no
coordination involved and is also an UB solution.

Through a iterative best response procedure, our approach
tries to improve this initial solution. For instance, at a given
iteration, we first assume s2 to remain and compute the best
response of LSP 1 by using the proposed heuristic (see “Best
Response Computation”). At the same time, we compute
the best response of LSP 2 assuming s1 remains. Each of
the resulting new joint schedule is kept if its objective value
is better than the fmin (see line 15–17 of Algorithm 1) or is
better than the solution at the start of this iteration (lines
18–19). Assuming that only 1 resulting joint schedule,
s1 = ⟨[A,F, ...,B, ...], [(5, 7), (10, 13), ..., (20,22), ...]⟩ a n d
s2 = ⟨[B,D, ...], [(4, 12), (15, 17), ...]⟩ returns an improved
objective value, we set this schedule as the current best solu-
tion, sbest and place it in the sampling pool H. This resulting
joint schedule is an improved solution because a congestion
is avoided at Location B as LSP 1 visits Location B at a later
time interval, (20, 22).

At the next iteration, since the sampling pool consists
only 1 joint schedule and it is also the current best solution,
another round of best response computations is done on this
schedule. Assuming that the resulting new joint schedules
do not return improved objective values, this current best
solution is then returned as the local optimal solution which
is also an approximate equilibrium solution since no one
player can improve its own payoff. This example illustrates
a terminating condition where the sampling pool is empty
and no improvement can be made to the current best solu-
tion. Another instance of terminating condition will be when
the computation time reaches a pre-determined time limit.

In this simple illustration, we simulate 1 iteration of itera-
tive best response procedure. In practice, there would be
multiple iterations and each iteration will explore multiple
improvement paths since the sampling pool would contain
multiple improved joint schedules.

Scalability and Flexibility

Our approach is scalable because the best response compu-
tations for every LSP can be done in parallel since they are
independent of each other (line 10 of Algorithm 1). In other
words, explorations of multiple improvement paths as shown
in Fig. 3 can be done concurrently. Our approach is also flex-
ible as it also allows any other forms of solution approach to
single-LSP VRPLC to be used to compute the best response.

Experiments

The objective of the experiment is twofold. First, we would
like to empirically verify whether our approach converges
to an equilibrium for our problem setting and second, to
evaluate the solution quality produced by our proposed
approach. For a more comprehensive evaluation of our pro-
posed approach, we look into the following aspects in our
experiments:

1.	 Exploration vs. Exploitation: We investigate the impact
of implementing �-greedy sampling policy to the solu-
tion quality.

2.	 Our Approach vs. Centralized: We compare our pro-
posed decentralized solution approach with a centralized
approach with respect to sideal (LB) and suncoord (UB).
Intuitively, our approach should return solutions with
lower payoff/cost than UB solution and within a reason-
able deviation from LB solution.

3.	 Sensitivity Analysis: We also investigate the impact of
plan deviations by any of the LSPs to solution quality.

Experimental Setup

We synthetically generate 30 test instances to simulate a
month’s worth of pickup-delivery requests for 20 LSPs.
These instances are generated based on existing datasets of
our trials with several local LSPs. Each test instances con-
sists of 100 requests per LSP and each LSP has 10 vehicles.
To simulate congestion at the delivery locations, we narrow
down the delivery locations to 15 unique shopping malls
with maximum capacity of 4 parking bays per location. Our
approach is implemented with K set at 300, T = 60 mins
and � = 0.3 . The implementation codes are written in Java
while CP Optimizer ver. 12.8 is used to solve the CP model.
The experiments are run on a server with the following con-
figurations: CentOS 8 with 24 CPU Cores and 32GB RAM.

Benchmark Algorithm

As there is no existing work that solves the non-collaborative
ML-VRPLC, we choose a centralized variant of our pro-
posed non-collaborative planning approach as a benchmark
algorithm. It is centralized in that all LSPs are treated as
one single LSP and the central agent makes the routing and
scheduling decision on behalf of the LSPs. It is non-collab-
orative as no exchange of requests or sharing of vehicles are
allowed i.e. each vehicle can only serve requests from the
LSP they belong to. We use a heuristic approach combining
ALNS and CP model similar to the one used to compute best
response to solve this single-LSP VRPLC. The initial solu-
tion is constructed via randomized Clarke-Wright Savings

	 SN Computer Science (2023) 4:157 157   Page 12 of 16

SN Computer Science

Heuristics adapted from [29]. The algorithm is run for 1 h
and 2 h for each test instance.

Performance Measures

On top of f(s), we introduce other performance measures to
evaluate the approaches more comprehensively. The other
performance measures introduced are as follows:

1.	 Maximum payoff deviation from an uncoordinated solu-
tion. g(s) measures the payoff deviation of the worst per-
forming LSP from the payoff if it follows a schedule
based on an uncoordinated planning. A negative devia-
tion value indicates reduction in cost and thus, the lower
the value, the higher the improvement gained from the
UB solution.

(11)g(s) = maxi∈NDeviationUB(s, i)

2.	 Average payoff deviation from an ideal solution. Unlike
f(s) which measures the payoff deviation of the worst
performing LSP, f �(s) measures the average payoff devi-
ation across all LSPs with respect to the ideal solution.
The lower the value of f �(s) , the closer the solution is to
the LB solution on average.

3.	 Average payoff deviation from an uncoordinated solu-
tion. Similar to f �(s) , g�(s) measures the average pay-
off deviation across all LSPs but with respect to the
UB solution. However, like Eq. (11), a negative g�(s)
value indicates reduction in cost which translates to the
improvement gained from the UB solution.

We include results in terms of average and percentiles for a
more extensive evaluation since the approaches being evalu-
ated are heuristics and contain a certain degree of stochastic-
ity. However, not all of the performance measures are being
used in every experiment. At different parts of the experi-
ments, we select only those which are relevant.

Experimental Results

Convergence

Figure 4 shows that the total payoff of all players converges
after 200 iterations on average for all test instances. This
supports our earlier deduction that ΓML-VRPLC possesses
an FIP and our proposed algorithm explores multiple

(12)DeviationUB(s, i) =
ui(s) − ui(suncoor)

ui(suncoor)
× 100%

(13)f �(s) =
1

n
×
∑

i∈N

DeviationLB(s, i)

(14)g�(s) =
1

n
×
∑

i∈N

DeviationUB(s, i)

Fig. 4   The total payoffs con-
verge for all 30 test instances.
Each coloured line represents
the result of one test instance

Table 3   The impact of � to the solution quality in terms of the objec-
tive function, f(s) and total payoff, P(s) across 30 test instances

Bold values are summarized values—more precisely, they show the
Avg (average) values by averaging over the values above

Performance measure � = 0 � = 0.3 � = 0.5

Max payoff Q1 19.3% 17.1% 17.0%

deviation from LB Q2 21.3% 21.1% 20.5%

f(s) Q3 25.0% 24.2% 26.2%

Avg ��.�% ��.�% ��.�%

Total payoff (in 1000s) Q1 124.0 122.6 122.1
P(s) Q2 126.5 127.2 128.4

Q3 130.6 130.7 132.6
Avg ���.� ���.� ���.�

SN Computer Science (2023) 4:157 	 Page 13 of 16  157

SN Computer Science

improvement path that will converge to an approximated
equilibrium. Meanwhile, the average run-time for 200 itera-
tions is around 1 h.

Exploration vs. Exploitation

We investigate the impact of the value of � to the solution
quality in terms of the objective value, f(s) and the total
payoff, P(s) as secondary objective function. As mentioned
earlier, the value of � determines the probability of exploring
“poorer” improvement path at every best response iteration.
� = 0 implies full exploitation and no exploration, meaning

Fig. 5   Our proposed approach
outperforms the centralized
approach (even when the
run-time is doubled) and its
solutions are well within the LB
and UB solutions in terms of
total payoff

Table 4   Our approach
outperforms the centralized
approach on every performance
measures across 30 test
instances

Bold values are summarized values—more precisely, they show the Avg (average) values by averaging over
the values above

Performance measure Our approach Centralized (1 h) Centralized (2 h)

Max payoff Q1 17.1% 28.0% 23.9%

deviation from LB Q2 21.1% 30.7% 28.8%

f(s) Q3 24.2% 36.5% 33.5%

Avg ��.�% ��.�% ��.�%

Max payoff Q1 −3.1% 10.5% 6.8%

deviation from UB Q2 −2.1% 13.7% 9.2%

g(s) Q3 −1.1% 16.4% 15.4%

Avg −�.�% ��.�% ��.�%

Avg payoff Q1 7.5% 15.5% 12.5%

deviation from LB Q2 8.6% 17.2% 14.1%

f �(s) Q3 9.4% 18.7% 17.1%

Avg �.�% ��.�% ��.�%

Avg payoff Q1 −11.8% −5.2% −7.4%

deviation from UB Q2 −9.9% −2.4% −4.6%

g�(s) Q3 −8.2% −0.6% −1.6%

Avg −��.�% −�.�% −�.�%

	 SN Computer Science (2023) 4:157 157   Page 14 of 16

SN Computer Science

that each best response procedure is done to improve only
the current best solution. In this experiment, we run our
solution approach with 3 different � values (0, 0.3 and 0.5)
against the 30 test instances.

As shown in Table 3, although the impact on the total
payoff does not seem to be significant, our approach with
� = 0.3 returns solutions where the payoff of worst perform-
ing LSP is within 21.1% on average compared to 26.5% and
31.8% when � = 0.5 and 0 respectively. Based on our experi-
ment, our choice of � = 0.3 provides a balance between
exploration (high � value) and exploitation (low � value)
and produces better quality solutions consistently across the
30 test instances.

Our Approach vs. Centralized

As shown in Fig. 5, we intentionally present the results as
a line chart and sort the test instances based on increasing
total payoff of the ideal solution to better illustrate that our
approach returns solutions whose total payoff are lower than

the centralized approach and are well within the UB and LB
solutions in all 30 test instances.

Table 4 shows that our approach outperforms the central-
ized approach on every performance measure even when the
run-time for the centralized approach is increased to 2 h. In
terms of the performance of the worst LSP, our approach is
able to ensure that on average, the payoff of the worst per-
forming LSP is still within about 21.1% from the LB solution
and at least gain about 2.7% improvement over the uncoordi-
nated solution. Meanwhile, even with doubling of the run-
time, the centralized approach can only manage to ensure
that the payoff of the worst performing LSP is within 32.0%
from the LB solution while incurring a 13.1% additional cost
as compared to an uncoordinated planning.

On average, across all LSPs, our approach return solu-
tions that are well within 8.6% deviation from the LB solu-
tion and improve the payoff of the LSPs by an average of
10.4% from an uncoordinated planning approach. This is
contrasted with the centralized approach which can only
manage to return solutions that are within 14.9% of LB solu-
tion on average and an improvement of about 5.1% from the
UB solution even when the run-time is doubled.

We observe that the worst performing LSP in central-
ized approach consistently returns g values that are positive
(see Table 4) which indicates that the solution for the worst
performing LSP is even worse than that of an uncoordinated
planning approach. This is because the centralized approach
only concerns about the system optimality and not on the
performance of each individual LSP. This reiterates our
point that a centralized approach may result in some LSPs
performing worse than if they are to plan independently.

Sensitivity Analysis

Our approach assumes that every LSP follow the generated
coordinated schedules. However, in real-world settings, there

Table 5   The impact of plan deviations by 10%, 30% and 50% of the
LSPs on the solution quality across 30 test instances

Bold values are summarized values—more precisely, they show the
Avg (average) values by averaging over the values above

Performance
measure

10% of LSPs
deviate

30% of LSPs
deviate

50% of LSPs
deviate

Max payoff Q1 12.5% 13.7% 16.3%

deviation from Q2 18.7% 19.7% 21.4%

generated plan Q3 27.7% 25.1% 47.2%

Avg ��.�% ��.�% ��.�%

Avg payoff Q1 4.3% 5.3% 6.1%

deviation from Q2 5.4% 5.8% 8.0%

generated plan Q3 6.3% 7.3% 10.3%

Avg �.�% �.�% �.�%

Fig. 6   Our proposed approach
and the centralized approach
produce comparable solutions
in terms of total payoff across
30 test instances (5 LSPs).
Similar to Fig. 5, we intention-
ally present the results as a line
chart and sort the test instances
based on increasing total payoff
of the ideal solution for ease of
visualization

SN Computer Science (2023) 4:157 	 Page 15 of 16  157

SN Computer Science

are possibilities that some LSPs deviate from the generated
plans. In this experiment, we investigate the impact of such
plan deviations by any of the LSPs on the solution quality.
To simplify the discussion, we assume scenarios where 10%,
30% and 50% of LSPs deviate from the generated schedules
and follow their own planned schedules. We assume that
LSPs are rational agents which mean that their own sched-
ules are computed with the objective of minimizing their
own total payoff/cost.

We generate and run another 30 test instances for this
experiment. To evaluate the impact on the solution qual-
ity of the resulting schedules, we use the maximum and
average payoff deviations from the generated plan as the
performance measures. As shown in Table 5, a slight plan
deviation caused by only 10% of the LSPs result in the worst
performing LSP suffering a loss of almost 30%. Due to the
stochastic nature of our approach, the eventual worst per-
forming LSP may not be the same every time the algorithm
is run. This may create sufficient deterrence for LSPs from
deviating from the generated schedules. On the other hand,
even with half of the LSPs not following the generated plans,
the average payoff deviation is kept within 10%. This shows
that our proposed approach is able to produce solutions that
are robust against plan deviations albeit with respect to the
average performances of all the LSPs.

Experiment Discussion

The experiments show that our proposed decentralized
approach outperforms a centralized approach given the avail-
able run-time limit of 1 h in all 30 test instances and in all 4
performance measures. Furthermore, we also find that the
centralized approach is computationally more expensive and
therefore not as scalable as our decentralized approach as it
needs longer run-time ( > 2 h) to return solutions that are at
least comparable to our approach.

To further verify the performance of the centralized
approach and its lack of scalability, we run another set of
experiments involving 5 LSPs with 100 pickup-delivery per
LSP and each LSP having 10 vehicles. To simulate conges-
tion at the delivery locations, we set the maximum capacity
at 2 parking bays per location. Figure 6 shows that both our
proposed approach and the centralized approach produce
comparable solutions in terms of total payoff across 30 test
instances given the same time budget. To further substantiate
this claim, we conduct the following paired t test:

H0 ∶ �d = 0

H1 ∶ �d ≠ 0 where �d refers to the mean difference
between the total payoffs of our proposed approach and the
centralized approach. In this test, we assume 95% confidence
level. The test returns a p-value of 0.79 which is greater than
� = 0.05 . Thus, there is no significant evidence to reject the
null hypothesis and as such we can conclude statistically

that the total payoff of our proposed approach and central-
ized approach are comparable. We have shown earlier that
the performance gap between the two approaches widens
when the problem scale gets larger (see “Our Approach vs.
Centralized”). Therefore, the centralized approach indeed
performs well only with smaller scale problems.

Although further experimentation may be needed to eval-
uate the robustness of our approach against various problem
scenarios such as varying the number of LSPs, vehicles,
requests and pickup-delivery locations, we have deliberately
chosen to conduct sufficiently varied types of experiments to
show that even though there will be LSPs who gain more and
others who will gain less, our approach is able to ensure that
there are enough incentives (and deterrence too) for LSPs to
adopt and follow this coordinated planning as compared to
them performing their own selfish, independent planning.

Conclusion and Future Works

The key idea proposed in this paper is a scalable, decen-
tralized, coordinated planning approach that can be tai-
lored to large-scale optimization problems involving
multiple “loosely coupled” entities competing for shared
resources. Our proposed iterative best response algorithm
decomposes a multi-agent problem into multiple single-
agent problems allowing existing single-agent planning
algorithms to be applied to a smaller problem.

Even though we assume that the best response algo-
rithms and the payoff functions of each LSP (or agent)
are identical, our approach can be extended to problems
where each LSP adopts different best response algorithm
and payoff function. The best response computation algo-
rithm is akin to a black-box which can be replaced with
any solution algorithm to solve single-LSP VRPLC (or
single-agent version of the problem). Moreover, even with
non-identical payoff functions, the inequality condition in
Eq. (1) will still be valid and therefore our approach will
still converge to an approximated equilibrium.

One key limitation of our approach is that we assume
the environment is deterministic, which may not be the
case in real-world setting. Furthermore, we assume that
every LSP in the system is cooperative in the sense that it
participates and adheres to the coordinated planning with-
out any possibility of plan deviation such as dropping out
of the system or making changes to their pickup-delivery
requests. Even though we performed a sensitivity analy-
sis to describe the impact of plan deviations to our solu-
tion, it is interesting to further investigate and enhance our
approach to take into consideration sources of uncertainty
in the environment. One such extension is to take into
account stochastic service time i.e. loading and unload-
ing time. In this paper, we assume constant service time.

	 SN Computer Science (2023) 4:157 157   Page 16 of 16

SN Computer Science

However, in practice, loading and unloading time may
vary and may cause further congestion and disruptions
to the planned schedules. Thus, incorporating stochastic
service time in the planning approach would result in a
more robust and improved solution [30].

Other than to evaluate the robustness of our approach in
a stochastic environment, it is also interesting to evaluate
the applicability of our approach in other problem domains
beyond logistics. Another possible direction for future
work will be to go beyond the empirical study that we did
in this paper by further defining and analyzing the theoreti-
cal bounds of our approach to n-player game ΓML-VRPLC in
terms of the classical notions of price of stability (PoS)
and price of anarchy (PoA).

Declarations 

Conflict of Interest  This research is funded by the National Research
Foundation Singapore under its Corp Lab @ University scheme and
Fujitsu Limited as part of the A*STAR-Fujitsu-SMU Urban Comput-
ing and Engineering Centre of Excellence.

References

	 1.	 Gansterer M, Hartl RF. Collaborative vehicle routing: a survey.
Eur J Oper Res. 2018;268(1):1–12.

	 2.	 Brafman RI, Domshlak C. From one to many: planning for
loosely coupled multi-agent systems. In: Proceedings of the
Eighteenth International Conference on International Confer-
ence on Automated Planning and Scheduling, 2008;28–35.

	 3.	 Joe W, Lau HC. Coordinating multi-party vehicle routing with loca-
tion congestion via iterative best response. In: Multi-Agent Systems:
18th European Conference, EUMAS 2021, Virtual Event, June
28–29, 2021, Revised Selected Papers, 2021; 72. Springer Nature.

	 4.	 Lam E, Van Hentenryck P. A branch-and-price-and-check model for
the vehicle routing problem with location congestion. Constraints.
2016;21(3):394–412.

	 5.	 Ropke S, Cordeau J-F. Branch and cut and price for the
pickup and delivery problem with time windows. Transp Sci.
2009;43(3):267–86.

	 6.	 Song R, Lau HC, Luo X, Zhao L. Coordinated delivery to shopping
malls with limited docking capacity. Transp Sci. 2022;52:501–27.

	 7.	 Cuervo DP, Vanovermeire C, Sörensen K. Determining collabora-
tive profits in coalitions formed by two partners with varying char-
acteristics. Transp Res Part C: Emerg Technol. 2016;70:171–84.

	 8.	 Guajardo M, Rönnqvist M, Flisberg P, Frisk M. Collabora-
tive transportation with overlapping coalitions. Eur J Oper Res.
2018;271(1):238–49.

	 9.	 Dai B, Chen H. A multi-agent and auction-based framework and
approach for carrier collaboration. Logist Res. 2011;3(2–3):101–20.

	10.	 Wang X, Kopfer H. Collaborative transportation planning of less-
than-truckload freight. OR Spectr. 2014;36(2):357–80.

	11.	 Torreño A, Onaindia E, Komenda A, Štolba M. Cooperative
multi-agent planning: a survey. ACM Comput Surv (CSUR).
2017;50(6):1–32.

	12.	 Nissim R, Brafman RI, Domshlak C. A general, fully distrib-
uted multi-agent planning algorithm. In: Proceedings of the 9th

International Conference on Autonomous Agents and Multiagent
Systems: 2010;1:1323–1330.

	13.	 Brafman RI, Domshlak C, Engel Y, Tennenholtz M. Planning
games. In: IJCAI, 2009;73–78. Citeseer.

	14.	 Lambert Iii TJ, Epelman MA, Smith RL. A fictitious play approach
to large-scale optimization. Oper Res. 2005;53(3):477–89.

	15.	 Brown GW. Iterative solution of games by fictitious play. Act Anal
Prod Alloc. 1951;13(1):374–6.

	16.	 Garcia A, Reaume D, Smith RL. Fictitious play for finding system
optimal routings in dynamic traffic networks. Transp Res Part B:
Methodol. 2000;34(2):147–56.

	17.	 Lambert TJ, Wang H. Fictitious play approach to a mobile unit
situation awareness problem. Univ. Michigan, Tech. Rep 2003.

	18.	 Campos-Nañez E, Garcia A, Li C. A game-theoretic approach
to efficient power management in sensor networks. Oper Res.
2008;56(3):552–61.

	19.	 Chen C, Cheng S-F, Lau HC. Multi-agent orienteering problem
with time-dependent capacity constraints. Web Intell Agent Syst.
2014;12(4):347–58.

	20.	 Jonsson A, Rovatsos M. Scaling up multiagent planning: a best-
response approach. In: Twenty-First International Conference on
Automated Planning and Scheduling 2011.

	21.	 De Nijs F, Spaan MT, de Weerdt MM. Best-response planning
of thermostatically controlled loads under power constraints. In:
Twenty-Ninth AAAI Conference on Artificial Intelligence 2015.

	22.	 Nissim R, Brafman RI. Cost-optimal planning by self-interested
agents. In: Twenty-Seventh AAAI Conference on Artificial Intel-
ligence 2013.

	23.	 Monderer D, Shapley LS. Potential games. Games Econ Behav.
1996;14(1):124–43.

	24.	 Li Y, Chen H, Prins C. Adaptive large neighborhood search for
the pickup and delivery problem with time windows, profits, and
reserved requests. Eur J Oper Res. 2016;252(1):27–38.

	25.	 Wang Y, Lei L, Zhang D, Lee LH. Towards delivery-as-a-service:
Effective neighborhood search strategies for integrated delivery
optimization of e-commerce and static o2o parcels. Transp Res
Part B: Methodol. 2020;139:38–63.

	26.	 Ropke S, Pisinger D. An adaptive large neighborhood search heuris-
tic for the pickup and delivery problem with time windows. Transp
Sci. 2006;40(4):455–72.

	27.	 Qi M, Lin W-H, Li N, Miao L. A spatiotemporal partitioning
approach for large-scale vehicle routing problems with time win-
dows. Transp Res Part E: Logis Transp Rev. 2012;48(1):248–57.

	28.	 Shaw P. A new local search algorithm providing high quality solu-
tions to vehicle routing problems. Glasgow: APES Group: Dept of
Computer Science, University of Strathclyde; 1997.

	29.	 Nazari M, Oroojlooy A, Takáč M, Snyder LV. Reinforcement learn-
ing for solving the vehicle routing problem. In: Proceedings of the
32nd International Conference on Neural Information Processing
Systems, 2018;9861–9871.

	30.	 de Weerdt MM, Stein S, Gerding EH, Robu V, Jennings NR.
Intention-aware routing of electric vehicles. IEEE Trans Intell
Transp Syst. 2015;17(5):1472–82.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

	Coordinating Multi-party Vehicle Routing with Location Congestion via Iterative Best Response
	Abstract
	Introduction
	Related Works
	VRP with Location Congestion
	ML-VRPLC
	ML-VRPLC as a Multi-Party VRP
	ML-VRPLC as an MAP Problem
	Cooperative Domain
	Non-Cooperative Domain

	ML-VRPLC as a Non-Cooperative MAP Problem

	Problem Description
	Model Formulation
	ML-VRPLC as a Strategic Game
	Strategy
	Potential Function
	Equilibrium and Local Optimality
	Objective Function

	Solution Approach
	Iterative Best Response Algorithm
	Initial Solution, Lower Bound and Upper Bound Solutions
	Finite Improvement Paths and Convergence

	Best Response Computation
	ALNS as Route Optimizer
	Remove Operators
	Insert Operators
	CP Model as Scheduler

	Solution Illustration
	Scalability and Flexibility

	Experiments
	Experimental Setup
	Benchmark Algorithm
	Performance Measures

	Experimental Results
	Convergence
	Exploration vs. Exploitation
	Our Approach vs. Centralized
	Sensitivity Analysis
	Experiment Discussion

	Conclusion and Future Works
	References

