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Abstract
This work is motivated by a real-world problem of coordinating B2B pickup-delivery operations to shopping malls involving 
multiple non-collaborative logistics service providers (LSPs) in a congested city where space is scarce. This problem can 
be categorized as a vehicle routing problem with pickup and delivery, time windows and location congestion with multiple 
LSPs (or ML-VRPLC in short), and we propose a scalable, decentralized, coordinated planning approach via iterative best 
response. We formulate the problem as a strategic game where each LSP is a self-interested agent but is willing to participate 
in a coordinated planning as long as there are sufficient incentives. Through an iterative best response procedure, agents 
adjust their schedules until no further improvement can be obtained to the resulting joint schedule. We seek to find the best 
joint schedule which maximizes the minimum gain achieved by any one LSP, as LSPs are interested in how much benefit 
they can gain rather than achieving a system optimality. We compare our approach to a centralized planning approach and 
our experiment results show that our approach is more scalable and is able to achieve on average 10% more gain within an 
operationally realistic time limit.

Keywords  Vehicle routing problem · Multi-agent systems · Best response planning

Introduction

Business-to-business (B2B) pickup-delivery operations to 
and from commercial or retail locations involving multiple 
parties, commonly referred to as logistics service provid-
ers (LSPs), more often than not cannot be done in silos. 
Resource constraints at these locations such as limited 
parking bays can cause congestion if each LSP adopts an 
uncoordinated, selfish planning. Thus, some form of coor-
dination is needed to deconflict the schedules of these LSPs 
to minimize congestion thereby maximizing logistics effi-
ciency. This research is motivated by a real-world problem 

of improving logistics efficiency in shopping malls involv-
ing multiple independent LSPs making B2B pickups and 
deliveries to these locations in small, congested cities where 
space is scarce.

Collaborative planning for vehicle routing is an active 
area of research and had been shown to improve efficiency, 
service level and sustainability [1]. However, collaborative 
planning assumes that various LSPs are willing to collabo-
rate with each other by forming coalitions, exchanging of 
information and/or sharing of resources to achieve a com-
mon objective. This is different from our problem setting 
where LSPs are independent entities who can only make 
decision locally in response to other LSPs’ decisions and 
they do not interact directly with each other to collaborate 
or make joint decision.

Ideally if we have one single agent who can control 
the routes and schedules of multiple LSPs with complete 
information and collaboration amongst the LSPs, we may 
achieve some form of system optimality. However, an 
unintended outcome is that some LSPs may suffer more 
loss than if they adopt their own planning independently. 
Moreover, such centralized approach is not scalable and 
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not meaningful in solving real-world problems, since LSPs 
may not always be willing to collaborate with one another.

To address the above concern, this paper proposes a 
scalable, decentralized, coordinated planning approach via 
iterative best response. The underlying problem can be 
seen as a vehicle routing problem with pickup and deliv-
ery, time windows and location congestion with multiple 
LSPs (or ML-VRPLC in short) (see Fig. 1a and b).

More precisely, we formulate the problem as a strategic 
game where each LSP is a self-interested agent willing to 
participate in a coordinated planning (without collaborat-
ing directly with other LSPs) as long as there are sufficient 
incentives. [2] coined the term “loosely-coupled” agent 
to describe an agent which exhibits such characteristics. 
Through an iterative best response procedure, multiple 
agents adjust their schedules until no further improve-
ment can be obtained to the resulting joint schedule. We 
seek to find the best joint schedule which maximizes the 
minimum gain achieved by any one LSP, since LSPs are 
more interested in how much benefit they can gain rather 
than achieving a system optimality. To realize such gains, 
we propose to use maximum cost deviation from an ideal 
solution (a solution that assumes no other LSPs exist to 
compete for the limited resources) as the performance 
measure. It is clear that the minimum gain is equivalent to 
the cost deviation of the worst performing LSP from this 
ideal solution.

This paper makes the following contributions: 

1.	 We define a new variant of VRP, ML-VRPLC and for-
mulate the problem as an n-player strategic game.

2.	 We propose a scalable, decentralized, coordinated plan-
ning approach based on iterative best response consist-
ing of a metaheuristic as route optimizer with a sched-
uler based on constraint programming (CP) model to 
solve a large-scale ML-VRPLC.

3.	 We show experimentally that our approach outperforms 
a centralized approach in solving large-scale problem 

within an operationally realistic time limit of 1 hour 
while still providing enough incentives for LSPs to par-
ticipate in a coordinated planning.

This paper is an extended version of a conference paper of 
the same title [3]. Besides improving the writeup, we pro-
vide extensive details on our proposed routing and sched-
uling heuristic for the best response computation step, as 
well as an example to illustrate our proposed approach. We 
also conduct a comprehensive set of experiments to further 
evaluate the robustness of our approach by varying the value 
of a certain key input parameter, testing on different problem 
sizes and incorporating plan deviations by some of the LSPs.

Related Works

VRP with Location Congestion

VRPLC is essentially a variant of a classical VRP with 
pickup and delivery, and time windows (VRPPDTW) but 
with cumulative resource constraint at each location [4]. 
Resources can be in the form of parking bays, cargo storage 
spaces or special equipment such as forklifts. In VRPLC, 
there are temporal dependencies between routes and sched-
ules that do not exist in classical VRPs. In classical VRPs, 
arrival times of vehicles are merely used to ensure time win-
dow feasibility. In VRPLC, changes to the time schedule of 
one route may affect the time schedule of another routes in 
the form of wait time or time window violation. Many exist-
ing approaches to VRP do not take into consideration this 
relationship between routes and schedules.

Lam and Van Hentenryck [4] proposed a branch-and-
price-and-check (BPC) approach to solve a single-LSP 
VRPLC. It is inspired by a branch-and-cut-and-price 
method for VRPPDTW [5] and combines it with a con-
straint programming subproblem to check the VRPPDTW 
solutions against the resource constraints. However, BPC 

Fig. 1   Problem illustrations for 
single-LSP VRP with location 
congestion (VRPLC) and the 
multi-LSP version of the prob-
lem (ML-VRPLC)
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approach can only find feasible solutions for instances up 
to 150 pickup-delivery requests and proves optimality for 
up to 80 requests given a time limit of 2 h. Therefore, this 
approach is not scalable when applied directly to solve 
ML-VPRLC, since pickup-delivery requests are usually in 
the order of hundreds per LSP and for our problem setting, 
a solution is expected within an hour due to operational 
requirement.

Song et  al. [6] studied a similar problem involving 
docking congestion at shopping malls under travel time 
and service time uncertainty. They modeled that problem 
as a two-stage stochastic mixed integer program, devel-
oped an adaptive large neighborhood search algorithm that 
approximates the second stage recourse function using 
various sample sizes.

A direct application of the above works to ML-VRPLC 
assumes a fully centralized, collaborative planning 
approach which we discussed earlier that may not be prac-
tical nor meaningful under a multiple LSP context.

ML‑VRPLC

ML-VRPLC can be considered as a problem belonging to 
an intersection between two main, well-studied research 
areas namely multi-party VRP and multi-agent planning 
(MAP). Existing approaches to Multi-Party VRP and 
MAP can broadly be categorized based on the degrees of 
collaboration and cooperation respectively. Based on our 
understanding of our problem setting, approaches to ML-
VRPLC should fall within Quadrant 3 (see Fig. 2) where 
the agents are non-collaborative but are still willing to 
cooperate to a certain degree. As ML-VRPLC is a new 
variant of VRP, there is no prior work done on this prob-
lem. Nevertheless, in the following subsections, we discuss 
existing works that are relevant to solving ML-VRPLC.

ML‑VRPLC as a Multi‑Party VRP

To solve VRPs involving multiple parties similar to ML-
VRPLC, many existing works in the literature focus on 
collaborative planning approaches. Gansterer and Hartl [1] 
coined the term collaborative vehicle routing and it is a big 
area of research on its own. Collaborative vehicle routing 
can be classified into centralized and decentralized collab-
orative planning. The extent of collaboration ranges from 
forming of alliances or coalitions (for e.g. [7, 8]) to sharing 
of resources such as sharing of vehicles or exchanging of 
requests through auction (for e.g. [9, 10]). We have estab-
lished earlier that existing works in this area are not directly 
applicable to our problem due to the non-collaborative 
nature of the LSPs.

ML‑VRPLC as an MAP Problem

MAP is simply planning in an environment where there 
exist multiple agents with concurrent actions. Approaches 
to MAP can be further categorized into cooperative and non-
cooperative domains although most MAP problems lie in 
between these two domains.

Cooperative Domain

Cooperative MAP involves agents that are not self-interested 
and are working together to form a joint plan for a common 
goal [11]. [2] introduced MA-STRIPS, a multi-agent plan-
ning model on which many cooperative MAP solvers are 
based on. [12] proposed a two-step approach consisting of 
centralized planner to produce local plan for each agent fol-
lowed by solving a distributed constraint satisfaction prob-
lem to obtain a global plan. [13] introduced the concept of 
planning games and proposed two models namely coalition-
planning games and auction-planning games. Those two 
models assume agents collaborate with each other through 
forming of coalitions or through an auction mechanism; 
similar to the approaches within the collaborative vehicle 
routing domain. In general, the approaches in this domain 
essentially assume cooperative agents working together to 
achieve a common goal.

Non‑Cooperative Domain

Planning in the context of multiple self-interested agents 
where agents do not fully cooperate or collaborate falls into 
the domain of non-cooperative game theory. MAP problem 
can be formulated as strategic game where agents interact 
with one another to increase their individual payoffs.

Lambert et al. [14] proposed a sampled fictitious play 
algorithm as an optimization heuristic to solve large-scale 
optimization problems. Optimization problem can be 

Fig. 2   ML-VRPLC as a multi-party VRP and multi-agent planning 
problem
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formulated as a n-player game where every pure-strategy 
equilibrium of a game is a local optimum since no player 
can change its strategy to improve the objective function. 
Fictitious play is an iterative procedure in which at each step, 
players compute their best replies based on the assumption 
that other players’ actions follow a probability distribution 
based on their past decisions [15]. This approach had been 
applied to various multi-agent optimization problems where 
resources are shared and limited such as dynamic traffic net-
work routing [16], mobile units situation awareness problem 
[17], power management in sensor network [18] and multi-
agent orienteering problem [19].

On a separate front, [20] proposed a best-response plan-
ning method to scale up existing multi-agent planning 
algorithms. The authors used existing single-agent plan-
ning algorithm to compute best response of each agent to 
iteratively improve the initial solution derived from an MAP 
algorithm. It is scalable compared to applying the MAP 
algorithm directly to an MAP planning problem. However, 
the authors evaluated their proposed approach only on stand-
ard benchmark problems such as those found in the Inter-
national Planning Competition (IPC) domains. On the other 
hand, [21] applied a similar best-response planning approach 
to a real-world power management problem.

ML‑VRPLC as a Non‑Cooperative MAP Problem

Given that the LSPs in ML-VRPLC are considered as 
“loosely-coupled” agents, the approach to solve ML-VRPLC 
will be somewhere in between cooperative and non-coopera-
tive domains of MAP, although it tends to lean more towards 
the non-cooperative domain since LSPs are still largely inde-
pendent and self-interested. Our approach includes certain 
elements that are discussed above such as non-cooperative 
game theory and best-response planning.

There exist prior works that propose MAP approaches 
for problems with multiple self-interested agents similar to 
ours. One such work proposes an approach that combines 
mechanism design (specifically Vickrey-Clarke-Groves 
(VCG) mechanism) and a distributed planning approach 
(Multi-Agent A*) [22]. Both this work and ours share some 
common features such as an assumption that agents are will-
ing to cooperate as long as there are sufficient incentives for 
them to do so and that agents update their plans in a iterative 
fashion based on observing the plans of other agents. How-
ever, the main key difference between these two approaches 
is that in [22], agents are able to communicate with other 
agents directly and each agent keeps track of its individual 
list of explored and unexplored states/plans. In contrast, for 
our approach, we assume a central agent that coordinates 
the message-passing function and keeps track of a central 
list of states/plans. This difference implies that the search 

process of our approach is more coordinated and structured 
while there is no clear structure or order that determines how 
often, when and which agents to communicate to in [22]. 
This difference alone results in both strengths and weak-
nesses for each approach. More coordinated approach can 
be more efficient as it avoids exploring the same solutions 
multiple times and incurs lower communication cost while, 
a more distributed approach is computationally less expen-
sive and does not need to assume the presence of a trusted 
central agent. Thus, the suitability and the performance of 
these two approaches will be very much dependent on the 
specific problem settings and requirements.

Nevertheless, our work differs mainly from other existing 
works in that we apply techniques from other research fields 
(MAP and game theory) on a new variant of a well-studied 
optimization problem (VRP) with a real-world problem 
scale.

Problem Description

Multiple LSPs have to fulfill a list of pickup-delivery 
requests within a day. They have multiple vehicles which 
need to go to the pickup locations to load up the goods and 
deliver them to various commercial or retail locations such 
as warehouses and shopping malls. The vehicles need to 
return to their depot by a certain time and every request has 
a time window requirement. A wait time will be incurred if 
the vehicle arrives early and time violations if it serves the 
request late. In addition, every location has limited park-
ing bays for loading and unloading, and a designated lunch 
hour break where no delivery is allowed. As such, further 
wait time and time window violations will be incurred if a 
vehicle arrives in a location where the parking bays are fully 
occupied or arrives during the designated lunch hour.

The objective of each LSP is to plan for a schedule that 
minimizes travel time, wait time and time window viola-
tions. Given that parking bays at every location are shared 
among the multiple LSPs, some sort of coordination is 
needed to deconflict their schedules to minimize congestion.

Model Formulation

ML‑VRPLC as a Strategic Game

We formulate ML-VRPLC as an n-player game ΓML−VRPLC 
with LSPs represented as players i ∈ N having a finite set 
of strategies Si and sharing the same payoff function i.e. 
u1(s) = ⋯ = un(s) = u(s) . s ∈ S1 ×… × Sn is a finite set 
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since Si is finite. Table 1 provides the set of notations and 
the corresponding descriptions used in the model.

Strategy

In this paper, we will use the terms ’strategy’, ’solution’ 
and ’schedule’ interchangeably since a strategy of a player 
i.e. an LSP is represented in the form of a schedule. A 
schedule is a solution of a single-LSP VRPLC which con-
sists of the routes (sequence of locations to visit) of every 
vehicle and the corresponding time intervals (start and end 
service times) of every requests served by each vehicle. si 
is represented as the following tuple:

si = ⟨si.routes, si.timeIntervals⟩

Potential Function

We define a function, P(s) =
∑

i∈N ui(s) i.e. total weighted 
sum of travel times, wait times and time violations when 
all LSP follow a joint schedule s. In this paper, we define 
the payoff function, ui(s) as cost incurred (see Eq. (6) for 
the full definition). P(s) is an ordinal potential function 
for ΓML-VRPLC since for every i ∈ N  and for every s−i ∈ S−i

Proof 
	�  ◻

Thus, ΓML-VRPLC is a finite ordinal potential game and 
it possesses a pure-strategy equilibrium and has the finite 
improvement property (FIP) [23]. Having the FIP means 

(1)
ui(si, s−i) − ui(s�

i
, s−i) > 0 iff

P(si, s−i) − P(s�
i
, s−i) > 0 for every si, s

�
i
∈ Si.

P(si, s−i) − P(s�
i
, s−i) > 0

⇒ ui(si, s−i) +
∑

j∈−i

uj(s−i) −
(
ui(s�

i
, s−i) +

∑

j∈−i

uj(s−i)
)
> 0

⇒ ui(si, s−i) − ui(s�
i
, s−i) > 0

that every path generated by a best response procedure 
in ΓML-VRPLC converges to an equilibrium. We are able to 
show conceptually and empirically that our approach con-
verges into an equilibrium in the later sections.

Equilibrium and Local Optimality

s� = (s�
i
, s�

−i
) is an equilibrium if

An equilibrium of ΓML-VRPLC is a local optimum since no 
player can improve its payoff/reduce its cost by changing its 
individual schedule. Conversely, every optimal solution, s∗ 
of ΓML−VRPLC is an equilibrium since ui(s∗) ≤ ui(si, s

∗
−i
) for 

all i ∈ N where si ∈ Bi(s
∗
−i
).

Objective Function

The objective of this problem is to minimize the maximum 
payoff deviation of any one LSP from an ideal solution.

where sideal is defined as the joint schedule where all other 
LSPs do not exist to compete for parking bays. sideal is a 
Lower Bound (LB) solution since it is a solution of a relaxed 
ΓML-VRPLC . We are essentially trying to search for solutions 
where each LSP’s payoff is as close as possible to its cor-
responding LB solution.

We do not def ine the objective function as 
mins∈S

∑
i∈N ui(s) because in this game, the players are not 

concerned about the system optimality (total payoff of 

(2)ui(s�
i
, s�

−i
) ≤ ui(si, s

�
−i
) for all i ∈ N where si ∈ Bi(s

�
−i
).

(3)mins∈Sf (s)

(4)f (s) = maxi∈NDeviationLB(s, i)

(5)DeviationLB(s, i) =
ui(s) − ui(sideal)

ui(sideal)
× 100%

Table 1   Set of notations used in 
Γ
ML-VRPLC

Notation Description

N A set of LSPs, N ∈ {1, 2, ..., n}

si A schedule of LSP i, i ∈ N, si ∈ Si

s A joint schedule of all LSP, s = (s1, s2, ..., sn), s ∈ S

s−i A joint schedule of all LSP except LSP i, s−i = (s1, ..., si−1, si+1, ..., sn)

(si, s−i) A joint schedule where LSP i follows a schedule si  while the rest fol-
lows a joint schedule, s−i

ui(s) Payoff of LSP i when all LSP follows a joint schedule, s
Bi(s−i) Best response of LSP i when all other LSPs follow a joint schedule, s−i
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all players) but rather on how much benefit it can obtain 
by adopting a coordinated planning instead of planning 
independently.

Solution Approach

The key idea of our proposed approach is to improve a 
chosen joint schedule iteratively by computing the best 
responses of each player assuming the rest of the players 
adopt the chosen joint schedule until no improvement can be 
obtained to the resulting joint schedule or until a given time 
limit or maximum number of iterations has been reached. 
Our approach is decentralized in nature because each LSP 
is an independent agent which can compute its own route 
and schedule i.e. a central agent does not dictate how each 
player determine its decision.

Given that we have established that our problem is a 
potential game and has an FIP, our approach will converge 
to an equilibrium which has been shown earlier to be equiv-
alent to a local optimal solution. Therefore, our approach 
seeks to explore multiple local optimal solutions until the 
terminating conditions are met and returns the best one 
found so far.

Iterative Best Response Algorithm

Algorithm 1 describes how the iterative best response algo-
rithm works. At each iteration (lines 3–22), a joint sched-
ule is chosen from a sampling pool of previously obtained 
improved joint schedules or from the current best joint 
schedule (line 7). We implement an �-greedy sampling 
policy to allow for exploration of multiple improvements 
paths (see Fig. 3 for an example of an improvement path) 
to search for best joint schedule. An improvement step 
consisting of n − 1 best response computations is applied 
to the chosen joint schedule to obtain new improved joint 
schedules (line 10). If no further improvement can be 
made to the sampled joint schedule, we proceed to the next 
iteration (lines 11–13). We update the current best joint 
schedule if any of the new joint schedules has a lower f(s) 
value than fmin (lines 15–16). Otherwise, we place the new 
improved joint schedules into the sampling pool for further 
improvement steps in the subsequent iterations (lines 17, 
19). We repeat the process until termination conditions 
are met. Finally, we return the current best joint schedule 
as the final output.

Fig. 3   One example of an 
improvement path assuming 
n = 3
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Initial Solution, Lower Bound and Upper Bound Solutions

The initial joint schedule can be initialized to any random, fea-
sible joint schedule. However, in this paper, we use the uncoor-
dinated joint schedule as the initial solution to be improved by 
iterative best response algorithm. To compute the initial joint 
schedule, sinitial , we first compute the best schedules for each 
LSP independently assuming no other LSPs exist to compete 
for the limited resources. This is akin to solving a single-LSP 
VRPLC for each LSP. The resulting joint schedule is in fact 
sideal and is the LB solution to ΓML-VRPLC . Next, a scheduler 
consisting of a CP model that incorporates the resource capac-
ity constraint at each location is solved for the combined routes 
of sideal . This forms an uncoordinated joint schedule, suncoord 
which serves as an Upper Bound (UB) solution to ΓML-VRPLC 
as any coordinated planning approaches must result in solu-
tions that are better than an uncoordinated one. We use the LB 

and UB solutions in the experiments to evaluate the solution 
quality of our proposed approach.

Finite Improvement Paths and Convergence

Each improved joint schedule can be represented as a node in 
a directed tree. A series of nodes with parent-child relation-
ship forms an improvement path as shown in Fig. 3 where 
P(sk,i) < P(sk−1,i

�

) for all k ≥ 1 and i, i� ∈ N . Every improve-
ment path is finite since S is a finite set. Every finite improve-
ment path will converge to an equilibrium and every terminal 
point is a local optimum. However, since the best response is 
computed heuristically and there is no way to prove optimality 
(as discussed in “Best Response Computation”, computing 
best response in our problem setting is equivalent to solv-
ing a mid-sized VRP with complex constraints which can-
not be solved to optimality given the time limit provided), the 
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resulting equilibrium is just an approximate. Nevertheless, we 
can show empirically in our experiments that our approach 
will converge to an approximated equilibrium solution after a 
certain number of iterations.

In short, our approach explores multiple improvement paths 
to search for a joint schedule that return the best objective 
value, f(s) with the lowest total payoff, P(s) as a secondary 
objective.

Best Response Computation

At every iteration, best response to a chosen joint schedule, 
sk is computed for each LSP (line 10 of Algorithm 1). The 
best response computation of single LSP is equivalent to 
solving a single-LSP VRPLC where the resource constraint is 

determined by the resource utilization of each location by all 
other LSPs based on sk

−i
 . Table 2 shows the notations used in 

this single-LSP VRPLC model.
We propose a heuristic consisting of Adaptive Large Neigh-

bourhood Search (ALNS) as route optimizer and a scheduler 
based on a CP model to solve this single-LSP VRPLC. Heuris-
tic is proposed as it is more scalable for a real-world problem 
setting. ALNS is used to search for better routes and the CP 
model based on the resulting routes is then solved to produce a 
schedule that meets the resource and time-related constraints. 
ALNS is chosen because it is probably the most effective 
metaheuristic for the VRPPDTW [24] and ALNS is widely 
used to solve large-scale problem [25]. Algorithm 2 details 
the proposed best response computation consisting of ALNS 
and CP model.

ALNS as Route Optimizer

The ALNS algorithm implemented in this paper is adapted 
from the vanilla version of ALNS proposed by [26] with 
differences in the choices of remove and insert operators and 
parameters used. However, the key difference in our ALNS 

implementation lies in line 7 of Algorithm 2. To compute the 
time intervals and the corresponding payoff of the updated 
solution, a CP model is solved. The detailed description of 
the CP model can be found in “CP Model as Scheduler”.

As the words adaptive and large in ALNS imply, ALNS 
explores large search space for new solutions by adaptively 
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choosing remove and insert operators to remove a certain 
number of orders from existing solution and reinserting them 
back to other positions to form a new solution (lines 4–6). 
In our implementation, we use the following remove and 
insert operators.

Remove Operators

We define the following 5 remove operators and each opera-
tor will select 10 − 15% of orders uniformly to be removed 
from the current solution. 

1.	 Random removal: This operator randomly selects orders 
from the current solution. Random removal allows 
exploration of larger search space even though the prob-
ability of finding a better solution is low.

2.	 Worst removal: This operator selects orders that result 
in the maximum increase in payoff/cost if removed from 
the current solution.

3.	 Spatio-temporal distance removal: This operator selects 
orders which has the highest sum of spatio-temporal dis-
tances with their adjacent orders. This operator tries to 
relocate orders that are more likely to incur higher travel 
cost and time window violations. The definition of spa-
tio-temporal distance implemented was first introduced 
in [27].

4.	 Time-violation removal: This operator selects orders 
that result in highest time window violation. Similar to 
spatio-temporal distance removal, this operator tries to 
relocate orders that are “out of position” with respect to 
their time window requirements.

5.	 Shaw removal: This operator was first introduced in [28]. 
The basic idea of Shaw removal is to select orders that 
are similar to each other. The intuition is that remov-
ing and reinserting orders that are similar to each other 
is easier and is more likely to create better solution. 

Removing and inserting orders that are vastly different 
from one another can be challenging and may result in 
unsuccessful reinsertions or poor insertion positions.

The above remove operators are selected to provide both 
exploitation and exploration in the search process. Rand-
omization in the operator provides the exploration capabil-
ity while removal operators like worst, spatio-temporal and 
time-violation are more exploitative in nature as they aim 
to improve the solution in a greedy manner. Shaw removal 
is essentially the opposite of worst removal and thus having 
both operators provides a diversification of search. Shaw 
removal select orders that are easier to remove and insert 
while worst removal select orders that are relatively harder 
to reinsert.

Insert Operators

Prior to any insertion operation, orders are selected for 
removal using the selected remove operations as described 
in previous section. The selected orders can be removed in 
two ways namely remove all or remove one by one. Remove 
all indicates that the selected orders for removal are removed 
together prior to insertion while remove one by one indi-
cates that order is removed one at the time prior to insertion. 
Meanwhile, insertion is done sequentially which means that 
for remove all, all orders are removed and reinserted one by 
one while for remove one by one, each order is removed and 
reinserted one at a time.

These are the six insert operators implemented: 

1.	 Remove all with greedy insertion: All orders are removed 
prior to any insertion. Greedy insertion heuristics insert 
the order that returns the minimum increase in payoff/
cost.

Table 2   Set of notations used in 
the single-LSP VRPLC model

Notation Description

V A set of vehicles
R A set of all requests
M A set of all locations
Rv A set of requests served by vehicle v
Om A set of requests at location m ∈ M.
Cm,t Resource capacity at location m at time t
er,v Lower time window of request r served by vehicle v
lr,v Upper time window of request r served by vehicle v
prev(r) Previous request served prior to request r, prev(r), r ∈ Rv.
dx,y Travel time from location of request x to location of request y
timeIntervalr,v Time interval when request r in vehicle v is being served

consisting of start and end time

T0, coolingRate Parameters for acceptance criteria in simulated annealing
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2.	 Remove one by one with greedy insertion: Similar to the 
first operator except that orders are removed and inserted 
one at a time.

3.	 Remove all with greedy insertion with noise: Similar to 
the first operator except that calculation of increase in 
payoff/cost includes a noise function.

4.	 Remove one by one with greedy insertion with noise: 
Similar to the second operator except that calculation 
of increase in payoff/cost includes a noise function.

5.	 Remove all with regret-k insertion: All orders are 
removed prior to any insertion. This operator inserts 
orders based on their regret values. Regret value is 
defined as the difference in the cost of inserting into its 
best route and its kth best route.

6.	 Remove one by one with regret-k insertion: Similar to 
the fifth operator except that orders are removed and 
inserted one at a time.

Similar to the remove operators, the above insert operators 
are selected to provide both exploitation and exploration in 
the search process. Randomization in the operator via noise 
function provides the exploration capability while greedy 
insertion is more exploitative in nature. In addition, regret 
insertion provides a certain degree of look ahead capability 
since greedy insertion is more likely to cause the solution to 
be stuck at local optima.

On top of the exploration capability provided by the 
remove and insert operators, a similar mechanism used in 
Simulated Annealing is applied in choosing poorer solutions 
to further enlarge the search space and also to escape local 
optima (line 14). For more detailed discussions of ALNS 
algorithm such as on the roulette wheel mechanism (line 4) 
and the adaptive weight adjustment for the operators (line 
17), we refer our readers to [26].

CP Model as Scheduler

The following CP model is solved to obtain the updated time 
intervals of the newly-found routes and the corresponding 
payoff of the updated schedules at every ALNS iteration in 
line 7 of Algorithm 2. The payoff is computed as follow:

where

(6)

u
i(s

i
) = w1 × totalTravelTime(s

i
.routes)

+minimize
∑

v∈V

{
w2 ×

∑

r∈R
v

waitTime
r,v

+w3 ×
∑

r∈R
v

timeViolation
r,v

}

The second term of Eq. (6) is the objective function of the 
CP model with {timeIntervalr,v}r∈Rv,v∈V

 as the primary deci-
sion variables of the model. The key constraints of the CP 
model are as follow:

Constraint (7) is used to model the resource capac-
ity constraint at each location at a given time t where 
start(timeIntervalr,v) ≤ t ≤ end(timeIntervalr,v) and Cm,t is 
determined by the resource utilization of all other LSPs 
based on sk

−i
 . Constraint (8) ensures that the time intervals 

of requests within a route do not overlap. Constraints (9) 
and (10) ensure that the start time of a request must at least 
be later than the end time of the previous request plus the 
corresponding travel time and it should not start before its 
lower time window. Other constraints relating to opera-
tional requirements such as no delivery within lunch hours, 
operating hours of the locations and vehicles are omitted 
to simplify the discussion as it is fairly straightforward to 
incorporate these constraints.

Solution Illustration

In this section, we provide a simple illustration on how 
our approach works using a simple toy example involving 
2 LSPs and here, we assume each location has a capacity 
of one. Our approach begins by computing the initial solu-
tion, lower bound and upper bound solutions as explained 
in “Initial Solution, Lower Bound and Upper Bound”. 
Each LSP plans independently assuming no other LSPs 
exist to compete for resource and the resulting joint sched-
ule is as follows s1 = ⟨[A,B, ...], [(5, 7), (9, 11), ...]⟩ and 
s2 = ⟨[B,D, ...], [(4, 12), (15, 17), ...]⟩ . This resulting joint 
schedule is in fact sideal which is a LB solution. However, 

w1,w2,w3 are predetermined set of weights,

waitTime
r,v = min{0, (start(timeInterval

r,v)

− end(timeIntervalprev(r),v) − dprev(r),r)},

timeViolation
r,v = min{0, (end(timeInterval

r,v) − l
r,v)},

s
i
.timeIntervals = {timeInterval

r,v}r∈R
v
,v∈V

(7)
CUMULATIVE({timeIntervalr,v ∶ v ∈ V ,

r ∈ Rv ∩ Om}, 1,Cm,t),∀m ∈ M

(8)noOverlap({timeIntervalr,v ∶ r ∈ Rv}),∀v ∈ V

(9)
start(timeInterval

r,v) ≥ end(timeIntervalprev(r),v)

+ dprev(r),r,∀r ∈ R
v
, v ∈ V

(10)start(timeIntervalr,v) ≥ er,v,∀r ∈ Rv, v ∈ V
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it is observed that LSP 1 will need to wait at Location B 
because LSP 2 is still occupying Location B at time inter-
val (9, 11). Thus, through a CP-based scheduler, this ini-
tial joint schedule is revised to a feasible solution such as 
s1 = ⟨[A,B, ...], [(5, 7), (13,15), ...]⟩ while s2 remains. Due to 
the waiting time incurred in Location B, the cost of this 
initial solution is higher. This is a suncoord since there is no 
coordination involved and is also an UB solution.

Through a iterative best response procedure, our approach 
tries to improve this initial solution. For instance, at a given 
iteration, we first assume s2 to remain and compute the best 
response of LSP 1 by using the proposed heuristic (see “Best 
Response Computation”). At the same time, we compute 
the best response of LSP 2 assuming s1 remains. Each of 
the resulting new joint schedule is kept if its objective value 
is better than the fmin (see line 15–17 of Algorithm 1) or is 
better than the solution at the start of this iteration (lines 
18–19). Assuming that only 1 resulting joint schedule, 
s1 = ⟨[A,F, ...,B, ...], [(5, 7), (10, 13), ..., (20,22), ...]⟩  a n d 
s2 = ⟨[B,D, ...], [(4, 12), (15, 17), ...]⟩ returns an improved 
objective value, we set this schedule as the current best solu-
tion, sbest and place it in the sampling pool H. This resulting 
joint schedule is an improved solution because a congestion 
is avoided at Location B as LSP 1 visits Location B at a later 
time interval, (20, 22).

At the next iteration, since the sampling pool consists 
only 1 joint schedule and it is also the current best solution, 
another round of best response computations is done on this 
schedule. Assuming that the resulting new joint schedules 
do not return improved objective values, this current best 
solution is then returned as the local optimal solution which 
is also an approximate equilibrium solution since no one 
player can improve its own payoff. This example illustrates 
a terminating condition where the sampling pool is empty 
and no improvement can be made to the current best solu-
tion. Another instance of terminating condition will be when 
the computation time reaches a pre-determined time limit.

In this simple illustration, we simulate 1 iteration of itera-
tive best response procedure. In practice, there would be 
multiple iterations and each iteration will explore multiple 
improvement paths since the sampling pool would contain 
multiple improved joint schedules.

Scalability and Flexibility

Our approach is scalable because the best response compu-
tations for every LSP can be done in parallel since they are 
independent of each other (line 10 of Algorithm 1). In other 
words, explorations of multiple improvement paths as shown 
in Fig. 3 can be done concurrently. Our approach is also flex-
ible as it also allows any other forms of solution approach to 
single-LSP VRPLC to be used to compute the best response.

Experiments

The objective of the experiment is twofold. First, we would 
like to empirically verify whether our approach converges 
to an equilibrium for our problem setting and second, to 
evaluate the solution quality produced by our proposed 
approach. For a more comprehensive evaluation of our pro-
posed approach, we look into the following aspects in our 
experiments: 

1.	 Exploration vs. Exploitation: We investigate the impact 
of implementing �-greedy sampling policy to the solu-
tion quality.

2.	 Our Approach vs. Centralized: We compare our pro-
posed decentralized solution approach with a centralized 
approach with respect to sideal (LB) and suncoord (UB). 
Intuitively, our approach should return solutions with 
lower payoff/cost than UB solution and within a reason-
able deviation from LB solution.

3.	 Sensitivity Analysis: We also investigate the impact of 
plan deviations by any of the LSPs to solution quality.

Experimental Setup

We synthetically generate 30 test instances to simulate a 
month’s worth of pickup-delivery requests for 20 LSPs. 
These instances are generated based on existing datasets of 
our trials with several local LSPs. Each test instances con-
sists of 100 requests per LSP and each LSP has 10 vehicles. 
To simulate congestion at the delivery locations, we narrow 
down the delivery locations to 15 unique shopping malls 
with maximum capacity of 4 parking bays per location. Our 
approach is implemented with K set at 300, T = 60 mins 
and � = 0.3 . The implementation codes are written in Java 
while CP Optimizer ver. 12.8 is used to solve the CP model. 
The experiments are run on a server with the following con-
figurations: CentOS 8 with 24 CPU Cores and 32GB RAM.

Benchmark Algorithm

As there is no existing work that solves the non-collaborative 
ML-VRPLC, we choose a centralized variant of our pro-
posed non-collaborative planning approach as a benchmark 
algorithm. It is centralized in that all LSPs are treated as 
one single LSP and the central agent makes the routing and 
scheduling decision on behalf of the LSPs. It is non-collab-
orative as no exchange of requests or sharing of vehicles are 
allowed i.e. each vehicle can only serve requests from the 
LSP they belong to. We use a heuristic approach combining 
ALNS and CP model similar to the one used to compute best 
response to solve this single-LSP VRPLC. The initial solu-
tion is constructed via randomized Clarke-Wright Savings 
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Heuristics adapted from [29]. The algorithm is run for 1 h 
and 2 h for each test instance.

Performance Measures

On top of f(s), we introduce other performance measures to 
evaluate the approaches more comprehensively. The other 
performance measures introduced are as follows: 

1.	 Maximum payoff deviation from an uncoordinated solu-
tion. g(s) measures the payoff deviation of the worst per-
forming LSP from the payoff if it follows a schedule 
based on an uncoordinated planning. A negative devia-
tion value indicates reduction in cost and thus, the lower 
the value, the higher the improvement gained from the 
UB solution. 

(11)g(s) = maxi∈NDeviationUB(s, i)

2.	 Average payoff deviation from an ideal solution. Unlike 
f(s) which measures the payoff deviation of the worst 
performing LSP, f �(s) measures the average payoff devi-
ation across all LSPs with respect to the ideal solution. 
The lower the value of f �(s) , the closer the solution is to 
the LB solution on average. 

3.	 Average payoff deviation from an uncoordinated solu-
tion. Similar to f �(s) , g�(s) measures the average pay-
off deviation across all LSPs but with respect to the 
UB solution. However, like Eq. (11), a negative g�(s) 
value indicates reduction in cost which translates to the 
improvement gained from the UB solution. 

We include results in terms of average and percentiles for a 
more extensive evaluation since the approaches being evalu-
ated are heuristics and contain a certain degree of stochastic-
ity. However, not all of the performance measures are being 
used in every experiment. At different parts of the experi-
ments, we select only those which are relevant.

Experimental Results

Convergence

Figure 4 shows that the total payoff of all players converges 
after 200 iterations on average for all test instances. This 
supports our earlier deduction that ΓML-VRPLC possesses 
an FIP and our proposed algorithm explores multiple 

(12)DeviationUB(s, i) =
ui(s) − ui(suncoor)

ui(suncoor)
× 100%

(13)f �(s) =
1

n
×
∑

i∈N

DeviationLB(s, i)

(14)g�(s) =
1

n
×
∑

i∈N

DeviationUB(s, i)

Fig. 4   The total payoffs con-
verge for all 30 test instances. 
Each coloured line represents 
the result of one test instance

Table 3   The impact of � to the solution quality in terms of the objec-
tive function, f(s) and total payoff, P(s) across 30 test instances

Bold values are summarized values—more precisely, they show the 
Avg (average) values by averaging over the values above

Performance measure � = 0 � = 0.3 � = 0.5

Max payoff Q1 19.3% 17.1% 17.0%

deviation from LB Q2 21.3% 21.1% 20.5%

f(s) Q3 25.0% 24.2% 26.2%

Avg ��.�% ��.�% ��.�%

Total payoff (in 1000s) Q1 124.0 122.6 122.1
P(s) Q2 126.5 127.2 128.4

Q3 130.6 130.7 132.6
Avg ���.� ���.� ���.�
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improvement path that will converge to an approximated 
equilibrium. Meanwhile, the average run-time for 200 itera-
tions is around 1 h.

Exploration vs. Exploitation

We investigate the impact of the value of � to the solution 
quality in terms of the objective value, f(s) and the total 
payoff, P(s) as secondary objective function. As mentioned 
earlier, the value of � determines the probability of exploring 
“poorer” improvement path at every best response iteration. 
� = 0 implies full exploitation and no exploration, meaning 

Fig. 5   Our proposed approach 
outperforms the centralized 
approach (even when the 
run-time is doubled) and its 
solutions are well within the LB 
and UB solutions in terms of 
total payoff

Table 4   Our approach 
outperforms the centralized 
approach on every performance 
measures across 30 test 
instances

Bold values are summarized values—more precisely, they show the Avg (average) values by averaging over 
the values above

Performance measure Our approach Centralized (1 h) Centralized (2 h)

Max payoff Q1 17.1% 28.0% 23.9%

deviation from LB Q2 21.1% 30.7% 28.8%

f(s) Q3 24.2% 36.5% 33.5%

Avg ��.�% ��.�% ��.�%

Max payoff Q1 −3.1% 10.5% 6.8%

deviation from UB Q2 −2.1% 13.7% 9.2%

g(s) Q3 −1.1% 16.4% 15.4%

Avg −�.�% ��.�% ��.�%

Avg payoff Q1 7.5% 15.5% 12.5%

deviation from LB Q2 8.6% 17.2% 14.1%

f �(s) Q3 9.4% 18.7% 17.1%

Avg �.�% ��.�% ��.�%

Avg payoff Q1 −11.8% −5.2% −7.4%

deviation from UB Q2 −9.9% −2.4% −4.6%

g�(s) Q3 −8.2% −0.6% −1.6%

Avg −��.�% −�.�% −�.�%
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that each best response procedure is done to improve only 
the current best solution. In this experiment, we run our 
solution approach with 3 different � values (0, 0.3 and 0.5) 
against the 30 test instances.

As shown in Table 3, although the impact on the total 
payoff does not seem to be significant, our approach with 
� = 0.3 returns solutions where the payoff of worst perform-
ing LSP is within 21.1% on average compared to 26.5% and 
31.8% when � = 0.5 and 0 respectively. Based on our experi-
ment, our choice of � = 0.3 provides a balance between 
exploration (high � value) and exploitation (low � value) 
and produces better quality solutions consistently across the 
30 test instances.

Our Approach vs. Centralized

As shown in Fig. 5, we intentionally present the results as 
a line chart and sort the test instances based on increasing 
total payoff of the ideal solution to better illustrate that our 
approach returns solutions whose total payoff are lower than 

the centralized approach and are well within the UB and LB 
solutions in all 30 test instances.

Table 4 shows that our approach outperforms the central-
ized approach on every performance measure even when the 
run-time for the centralized approach is increased to 2 h. In 
terms of the performance of the worst LSP, our approach is 
able to ensure that on average, the payoff of the worst per-
forming LSP is still within about 21.1% from the LB solution 
and at least gain about 2.7% improvement over the uncoordi-
nated solution. Meanwhile, even with doubling of the run-
time, the centralized approach can only manage to ensure 
that the payoff of the worst performing LSP is within 32.0% 
from the LB solution while incurring a 13.1% additional cost 
as compared to an uncoordinated planning.

On average, across all LSPs, our approach return solu-
tions that are well within 8.6% deviation from the LB solu-
tion and improve the payoff of the LSPs by an average of 
10.4% from an uncoordinated planning approach. This is 
contrasted with the centralized approach which can only 
manage to return solutions that are within 14.9% of LB solu-
tion on average and an improvement of about 5.1% from the 
UB solution even when the run-time is doubled.

We observe that the worst performing LSP in central-
ized approach consistently returns g values that are positive 
(see Table 4) which indicates that the solution for the worst 
performing LSP is even worse than that of an uncoordinated 
planning approach. This is because the centralized approach 
only concerns about the system optimality and not on the 
performance of each individual LSP. This reiterates our 
point that a centralized approach may result in some LSPs 
performing worse than if they are to plan independently.

Sensitivity Analysis

Our approach assumes that every LSP follow the generated 
coordinated schedules. However, in real-world settings, there 

Table 5   The impact of plan deviations by 10%, 30% and 50% of the 
LSPs on the solution quality across 30 test instances

Bold values are summarized values—more precisely, they show the 
Avg (average) values by averaging over the values above

Performance 
measure

10% of LSPs 
deviate

30% of LSPs 
deviate

50% of LSPs 
deviate

Max payoff Q1 12.5% 13.7% 16.3%

deviation from Q2 18.7% 19.7% 21.4%

generated plan Q3 27.7% 25.1% 47.2%

Avg ��.�% ��.�% ��.�%

Avg payoff Q1 4.3% 5.3% 6.1%

deviation from Q2 5.4% 5.8% 8.0%

generated plan Q3 6.3% 7.3% 10.3%

Avg �.�% �.�% �.�%

Fig. 6   Our proposed approach 
and the centralized approach 
produce comparable solutions 
in terms of total payoff across 
30 test instances (5 LSPs). 
Similar to Fig. 5, we intention-
ally present the results as a line 
chart and sort the test instances 
based on increasing total payoff 
of the ideal solution for ease of 
visualization
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are possibilities that some LSPs deviate from the generated 
plans. In this experiment, we investigate the impact of such 
plan deviations by any of the LSPs on the solution quality. 
To simplify the discussion, we assume scenarios where 10%, 
30% and 50% of LSPs deviate from the generated schedules 
and follow their own planned schedules. We assume that 
LSPs are rational agents which mean that their own sched-
ules are computed with the objective of minimizing their 
own total payoff/cost.

We generate and run another 30 test instances for this 
experiment. To evaluate the impact on the solution qual-
ity of the resulting schedules, we use the maximum and 
average payoff deviations from the generated plan as the 
performance measures. As shown in Table 5, a slight plan 
deviation caused by only 10% of the LSPs result in the worst 
performing LSP suffering a loss of almost 30%. Due to the 
stochastic nature of our approach, the eventual worst per-
forming LSP may not be the same every time the algorithm 
is run. This may create sufficient deterrence for LSPs from 
deviating from the generated schedules. On the other hand, 
even with half of the LSPs not following the generated plans, 
the average payoff deviation is kept within 10%. This shows 
that our proposed approach is able to produce solutions that 
are robust against plan deviations albeit with respect to the 
average performances of all the LSPs.

Experiment Discussion

The experiments show that our proposed decentralized 
approach outperforms a centralized approach given the avail-
able run-time limit of 1 h in all 30 test instances and in all 4 
performance measures. Furthermore, we also find that the 
centralized approach is computationally more expensive and 
therefore not as scalable as our decentralized approach as it 
needs longer run-time ( > 2 h) to return solutions that are at 
least comparable to our approach.

To further verify the performance of the centralized 
approach and its lack of scalability, we run another set of 
experiments involving 5 LSPs with 100 pickup-delivery per 
LSP and each LSP having 10 vehicles. To simulate conges-
tion at the delivery locations, we set the maximum capacity 
at 2 parking bays per location. Figure 6 shows that both our 
proposed approach and the centralized approach produce 
comparable solutions in terms of total payoff across 30 test 
instances given the same time budget. To further substantiate 
this claim, we conduct the following paired t test:

H0 ∶ �d = 0

H1 ∶ �d ≠ 0 where �d refers to the mean difference 
between the total payoffs of our proposed approach and the 
centralized approach. In this test, we assume 95% confidence 
level. The test returns a p-value of 0.79 which is greater than 
� = 0.05 . Thus, there is no significant evidence to reject the 
null hypothesis and as such we can conclude statistically 

that the total payoff of our proposed approach and central-
ized approach are comparable. We have shown earlier that 
the performance gap between the two approaches widens 
when the problem scale gets larger (see “Our Approach vs. 
Centralized”). Therefore, the centralized approach indeed 
performs well only with smaller scale problems.

Although further experimentation may be needed to eval-
uate the robustness of our approach against various problem 
scenarios such as varying the number of LSPs, vehicles, 
requests and pickup-delivery locations, we have deliberately 
chosen to conduct sufficiently varied types of experiments to 
show that even though there will be LSPs who gain more and 
others who will gain less, our approach is able to ensure that 
there are enough incentives (and deterrence too) for LSPs to 
adopt and follow this coordinated planning as compared to 
them performing their own selfish, independent planning.

Conclusion and Future Works

The key idea proposed in this paper is a scalable, decen-
tralized, coordinated planning approach that can be tai-
lored to large-scale optimization problems involving 
multiple “loosely coupled” entities competing for shared 
resources. Our proposed iterative best response algorithm 
decomposes a multi-agent problem into multiple single-
agent problems allowing existing single-agent planning 
algorithms to be applied to a smaller problem.

Even though we assume that the best response algo-
rithms and the payoff functions of each LSP (or agent) 
are identical, our approach can be extended to problems 
where each LSP adopts different best response algorithm 
and payoff function. The best response computation algo-
rithm is akin to a black-box which can be replaced with 
any solution algorithm to solve single-LSP VRPLC (or 
single-agent version of the problem). Moreover, even with 
non-identical payoff functions, the inequality condition in 
Eq. (1) will still be valid and therefore our approach will 
still converge to an approximated equilibrium.

One key limitation of our approach is that we assume 
the environment is deterministic, which may not be the 
case in real-world setting. Furthermore, we assume that 
every LSP in the system is cooperative in the sense that it 
participates and adheres to the coordinated planning with-
out any possibility of plan deviation such as dropping out 
of the system or making changes to their pickup-delivery 
requests. Even though we performed a sensitivity analy-
sis to describe the impact of plan deviations to our solu-
tion, it is interesting to further investigate and enhance our 
approach to take into consideration sources of uncertainty 
in the environment. One such extension is to take into 
account stochastic service time i.e. loading and unload-
ing time. In this paper, we assume constant service time. 
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However, in practice, loading and unloading time may 
vary and may cause further congestion and disruptions 
to the planned schedules. Thus, incorporating stochastic 
service time in the planning approach would result in a 
more robust and improved solution [30].

Other than to evaluate the robustness of our approach in 
a stochastic environment, it is also interesting to evaluate 
the applicability of our approach in other problem domains 
beyond logistics. Another possible direction for future 
work will be to go beyond the empirical study that we did 
in this paper by further defining and analyzing the theoreti-
cal bounds of our approach to n-player game ΓML-VRPLC in 
terms of the classical notions of price of stability (PoS) 
and price of anarchy (PoA).
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